A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth

Microbiological Research - Tập 206 - Trang 50-59 - 2018
Ester Simonetti1, Irma N. Roberts1, Marcela S. Montecchia1, Flavio H. Gutierrez-Boem1, Federico M. Gomez1, Jimena A. Ruiz1
1Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires, CONICET, FAUBA. Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina

Tài liệu tham khảo

Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2 Bacon, 1996, Fusaric acid and pathogenic interactions of corn and non-corn isolates of Fusarium moniliforme, a nonobligate pathogen of corn, Adv. Exp. Med. Biol., 392, 175, 10.1007/978-1-4899-1379-1_16 Bacon, 1995, Toxic interaction of fumonisin B1 and fusaric acid measured by injection into fertile chicken egg, Mycopathologia, 129, 29, 10.1007/BF01139334 Bacon, 2001, Biological control of Fusarium moniliforme in maize, Environ. Health Perspect., 109, 325 Bacon, 2006, Growth-inhibiting effects of concentrations of fusaric acid on the growth of Bacillus mojavensis and other biocontrol Bacillus species, J. Appl. Microbiol., 100, 185, 10.1111/j.1365-2672.2005.02770.x Baethgen, 1989, A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant kjeldahl digests, Commun. Soil Sci. Plant Anal., 20, 961, 10.1080/00103628909368129 Bernar, 2016, El ácido fusárico, micotoxina producida por Fusarium spp., afecta negativamente el crecimiento de Pseudomonas protegens Pf-5 mediante el secuestro de hierro y la producción de especies reactivas de oxígeno, vol. 15 Bosland, 1998, Fusarium oxysporum a pathogen of many plant species, Adv. Plant. Pathol., 6, 281, 10.1016/B978-0-12-033706-4.50023-2 Castanheira, 2016, Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils, J. Appl. Microbiol., 120, 724, 10.1111/jam.13025 Chakrabarti, 1980, Correlation between virulence and fusaric acid production in Fusarium oxysporum f. sp carthami, J. Phytopathol., 99, 43, 10.1111/j.1439-0434.1980.tb03758.x Chakrabarti, 1989, The disease cycle of mango malformation induced by Fusarium moniliforme var subglutinans and the curative effects of mangiferinmetal chelates, J. Phytopathol., 125, 128, 10.1111/j.1439-0434.1989.tb01065.x Chiarini, 2006, Burkholderia cepacia complex species: health hazards and biotechnological potential, Trends Microbiol., 14, 277, 10.1016/j.tim.2006.04.006 Chin-A-Woeng, 1998, Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp radicis-lycopersici, Mol. Plant-Microbe Interact., 11, 1069, 10.1094/MPMI.1998.11.11.1069 Coenye, 2003, Diversity and significance of Burkholderia species occupying diverse ecological niches, Environ. Microbiol., 5, 719, 10.1046/j.1462-2920.2003.00471.x Coenye, 2001, Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates, Int. J. Syst. Evol. Microbiol., 51, 1481, 10.1099/00207713-51-4-1481 Compant, 2008, Diversity and occurrence of Burkholderia spp. in the natural environment, FEMS Microbiol. Rev., 32, 607, 10.1111/j.1574-6976.2008.00113.x Depoorter, 2016, Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers, Appl. Microbiol. Biotechnol., 100, 5215, 10.1007/s00253-016-7520-x Duffy, 1997, Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis, Phytopathology, 87, 1250, 10.1094/PHYTO.1997.87.12.1250 Duffy, 2004, Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection, Appl. Environ. Microbiol., 70, 1836, 10.1128/AEM.70.3.1836-1842.2004 Dwivedi, 2010, Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential, Lett. Appl. Microbiol., 51, 54 Dworkin, 1958, Experiments with some microorganism which utilize ethane and hydrogen, J. Bacteriol., 75, 592, 10.1128/JB.75.5.592-603.1958 Edi Premono, 1996, Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere, Indones. J. Crop Sci., 11, 13 El-Hassan, 2007, Variation among Fusarium spp., the causal of potato tuber dry rot in their pathogenicity and mycotoxins production, Egypt. J. Phytopathol., 35, 53 Ellis, 1998, Growth, yield and grain quality of barley (Hordeum vulgare L.) in response to nitrogen uptake. II. Plant development and rate of germination, J. Exp. Bot., 49, 1021 Fernandez-Pol, 1993, Cytotoxic activity of fusaric acid on human adenocarcinoma cells in tissue culture, Anticancer Res., 13, 57 Glickman, 1995, A critical examination of the specificity of the Salkowski’s reagent for indolic compounds produced by phytopathogenic bacteria, Appl. Environ. Microbiol., 61, 793, 10.1128/AEM.61.2.793-796.1995 Gould, 1985, New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats, Appl. Environ. Microbiol., 49, 28, 10.1128/AEM.49.1.28-32.1985 Groenhagen, 2013, Production of bioactive volatiles by different Burkholderia ambifaria strains, J. Chem. Ecol., 39, 892, 10.1007/s10886-013-0315-y Hagedorn, 1987, A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil, Appl. Environ. Microbiol., 53, 2265, 10.1128/AEM.53.9.2265-2268.1987 Howell, 1979, Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium, Phytopathology, 69, 480, 10.1094/Phyto-69-480 Huisman, 1992, Synthesis of poly (3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains, Appl. Microbiol. Biotechnol., 38, 1, 10.1007/BF00169409 Jilani, 2013, Comparative assessment of growth and biodegradation potential of soil isolate in the presence of pesticides, Saudi J. Biol. Sci., 20, 257, 10.1016/j.sjbs.2013.02.007 Kang, 2014, Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate, Can. J. Microbiol., 60, 487, 10.1139/cjm-2014-0095 Kilbane, 1982, Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia, Appl. Environ. Microbiol., 44, 72, 10.1128/AEM.44.1.72-78.1982 King, 1993, Biocontrol of Aphanomyces root rot and Phytium damping off by Pseudomonas cepacia AMMD on four pea cultivars, Plant Dis., 77, 1185, 10.1094/PD-77-1185 Krastanov, 2013, Microbial degradation of phenol and phenolic derivatives, Eng. Life Sci., 13, 76, 10.1002/elsc.201100227 Lageveen, 1988, Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates, Appl. Environ. Microbiol., 54, 2924, 10.1128/AEM.54.12.2924-2932.1988 Laub, 1989, Antibiotic susceptibility of Salmonella spp. at different pH values, J. Gen. Microbiol., 135, 1407 Li, 2002, Broad spectrum antibiotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F, Crop Prot., 21, 129, 10.1016/S0261-2194(01)00074-6 Li, 2013, Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp cubense, PLoS One, 8, e70226, 10.1371/journal.pone.0070226 Long, 2010, The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception, New Phytol., 185, 554, 10.1111/j.1469-8137.2009.03079.x Loper, 2012, Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions, PLoS Genet., 8, e1002784, 10.1371/journal.pgen.1002784 Magliano, 2014, Protein content of grains of different size fraction in malting barley, J. Inst. Brew., 120, 347 Mao, 1998, Biocontrol of selected soilborne diseases of tomato and pepper plants, Crop Prot., 17, 535, 10.1016/S0261-2194(98)00055-6 Marrè, 1993, Relationship between fusaric acid uptake and its binding to cell structures by leaves of Egeria densa and its toxic effects on membrane permeability and respiration, Physiol. Mol. Plant Pathol., 42, 141, 10.1006/pmpp.1993.1012 Merritt, 2005, Growing and analyzing static biofilms, Curr. Protoc. Microbiol., 10.1002/9780471729259.mc01b01s00 Miller, 1972 Notz, 2002, Fusaric acid-producing strains of Fusarium oxysporum alter 2, 4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat, Appl. Environ. Microbiol., 68, 2229, 10.1128/AEM.68.5.2229-2235.2002 Ona, 2013, The effect of pH on indole-3-acetic acid (IAA) biosynthesis of Azospirillum brasilense Sp7, Symbiosis, 35, 199 Onofre-Lemus, 2009, ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants, Appl. Environ. Microbiol., 75, 6581, 10.1128/AEM.01240-09 Ostle, 1982, Nile Blue A as a fluorescent stain for poly-b-hydroxybutyrate, Appl. Environ. Microbiol., 44, 238, 10.1128/AEM.44.1.238-241.1982 Pérez-Miranda, 2007, O-CAS, a fast and universal method for siderophore detection, J. Microbiol. Methods, 70, 127, 10.1016/j.mimet.2007.03.023 Parra-Cota, 2014, Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake, PLoS One, 9, e88094, 10.1371/journal.pone.0088094 Pavlovkin, 2004, Some aspects of the phytotoxic action of fusaric acid on primary Ricinus roots, Plant Soil Environ., 50, 397, 10.17221/4050-PSE Payne, 2005, Development of a recA gene-based identification approach for the entire Burkholderia genus, Appl. Environ. Microbiol., 71, 3917, 10.1128/AEM.71.7.3917-3927.2005 Pegg, 1981, Biochemistry and physiology of pathogenesis, 193 Penrose, 2003, Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria, Physiol. Plant, 118, 10, 10.1034/j.1399-3054.2003.00086.x Pikovskaya, 1948, Mobilization of phosphorus in soil connection with vital capacity of source microbial species, Microbiologia, 17, 362 Quecine, 2015, An interspecies signaling system mediated by fusaric acid has parallel effects on antifungal metabolite production by Pseudomonas protegens Strain Pf-5 and antibiosis of Fusarium spp, Appl. Environ. Microbiol., 82, 1372, 10.1128/AEM.02574-15 Ramautar, 2003 Ramli, 2012, The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates, PLoS One, 7, e44104, 10.1371/journal.pone.0044104 Ruiz, 2015, Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5, PLoS One, 10, e0117040, 10.1371/journal.pone.0117040 Saikia, 2009, Influence of mineral amendment on disease suppressive activity of Pseudomonas fluorescens to Fusarium wilt of chickpea, Microbiol. Res., 164, 365, 10.1016/j.micres.2007.05.001 Schmidt, 2009, Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex, Environ. Microbiol., 11, 1422, 10.1111/j.1462-2920.2009.01870.x Schnider-Keel, 2000, Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin, J. Bacteriol., 182, 1215, 10.1128/JB.182.5.1215-1225.2000 Seo, 2007, Degradation of phenanthrene by Burkholderia sp. C3: initial 1, 2- and 3, 4-dioxygenation and meta- and ortho-cleavage of naphthalene-1, 2-diol, Biodegradation, 18, 123, 10.1007/s10532-006-9048-8 Silvestro, 2013, Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage, Span. J. Agric. Res., 11, 72, 10.5424/sjar/2013111-3081 Singh, 2014, Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L, Bot. Stud., 55, 66, 10.1186/s40529-014-0066-2 Smith, 1992, Recent advances in the understanding of Fusarium trichothecene mycotoxicoses, J. Anim Sci., 70, 3989, 10.2527/1992.70123989x Spilker, 2009, Expanded multilocus sequence typing for Burkholderia species, J. Clin. Microbiol., 47, 2607, 10.1128/JCM.00770-09 Stopnisek, 2014, Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations, Environ. Microbiol., 16, 1503, 10.1111/1462-2920.12211 Tabacchioni, 2008, Use of the gyrB gene to discriminate among species of the Burkholderia cepacia complex, FEMS Microbiol. Lett., 281, 175, 10.1111/j.1574-6968.2008.01105.x Tamura, 2013, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30, 2725, 10.1093/molbev/mst197 Tawfik, 2010, Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2. 2N, Org. Lett., 12, 664, 10.1021/ol9029269 Toyoda, 1991, DNA sequence of genes for detoxification of fusaric acid, a wilt-inducing agent produced by Fusarium species, J. Phytopathol., 133, 265, 10.1111/j.1439-0434.1991.tb00162.x Utsumi, 1991, Molecular cloning and characterization of the fusaric acid-resistance gene from Pseudomonas cepacia, Agric. Biol. Chem., 7, 1913 Vanlaere, 2008, Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex, Int. J. Syst. Evol. Microbiol., 58, 1580, 10.1099/ijs.0.65634-0 Wang, 2016, Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii, Sci. Rep., 6, 22596, 10.1038/srep22596 Weisburg, 1991, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 173, 697, 10.1128/jb.173.2.697-703.1991 Weller, 2002, Microbial populations responsible for specific soil suppressiveness to plant pathogens, Annu. Rev. Phytopathol., 40, 309, 10.1146/annurev.phyto.40.030402.110010 van Rij, 2004, Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391, Mol. Plant Microbe Interact., 17, 557, 10.1094/MPMI.2004.17.5.557 van Rij, 2005, Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391, Microbiology, 151, 2805, 10.1099/mic.0.28063-0