Một chất ức chế phân tử nhỏ Bcl-2 mới 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB) gây ra hiện tượng apoptosis trong các tế bào leukemia

Annals of Hematology - Tập 86 - Trang 471-481 - 2007
Manchao Zhang1, Yan Ling2, Chao-Yie Yang3, Hongpeng Liu3, Renxiao Wang3, Xihan Wu3, Ke Ding3, Feng Zhu2, Brian N. Griffith4, Ramzi M. Mohammad5, Shaomeng Wang3, Dajun Yang3
1Department of Biochemistry, West Virginia University, Morgantown, USA
2Lombardi Cancer Center, Georgetown University Medical Center, Washington, USA
3University of Michigan Medical School, Ann Arbor, USA.
4West Virginia School of Osteopathic Medicine, Lewisburg, USA
5Karmanos Cancer Institute, Wayne State University, Detroit, USA

Tóm tắt

Một chất ức chế phân tử nhỏ mới, 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB), cạnh tranh với peptide Bak BH3 để gắn vào protein Bcl-2 với độ ái lực gắn kết IC50 = 0.70 μM, được đánh giá bằng cách thử nghiệm gắn kết dựa trên phân cực huỳnh quang. Tế bào HL-60 có mức độ biểu hiện Bcl-2 cao nhất trong số các dòng tế bào được kiểm tra. Khi được điều trị với 5 μM MNB trong 6 giờ, 85% tế bào HL-60 đã được phát hiện là trải qua hiện tượng apoptosis. Chất ức chế pan-caspase, Z-VAD-FMK, ngăn chặn hiện tượng apoptosis do MNB gây ra trong tế bào HL-60. Sự hoạt hóa của các caspase-2, caspase-3, caspase-7, caspase-8, caspase-9 và PARP đã được quan sát thấy từ sớm, từ 4 đến 6 giờ điều trị MNB. Ngoài ra, đã được xác nhận rằng chất ức chế đặc hiệu caspase-3, Z-DEVD-FMK, ngăn chặn sự hoạt hóa của caspase-8 trong tế bào HL-60 được điều trị bằng MNB. Điều trị bằng MNB không làm thay đổi mức độ biểu hiện Bcl-2 hoặc Bax trong tế bào HL-60, nhưng gây ra sự cắt ngang của Bid. Các thí nghiệm tiếp theo đã chứng minh rằng MNB ức chế sự hợp dimer của Bcl-2 với Bax hoặc Bid, giảm tiềm năng màng ty thể (ΔΨmt), và gây ra sự phóng thích cytochrome c từ ty thể trong tế bào HL-60. Những kết quả này gợi ý rằng MNB gây ra hiện tượng apoptosis trong HL-60 bằng cách ức chế sự hợp dimer của Bcl-2 với các thành viên Bcl-2 thúc đẩy apoptosis, dẫn đến việc giảm tiềm năng màng ty thể và sự phóng thích cytochrome c, sự hoạt hóa của các caspase và PARP; đây là một quá trình phụ thuộc vào caspase mà trong đó sự hoạt hóa của caspase-8 phụ thuộc vào con đường truyền tín hiệu apoptosis của ty thể. MNB kéo dài tuổi thọ cho chuột mang HL-60, giết chết mạnh mẽ các tế bào AML và ALL tươi, chỉ ra rằng nó có tiềm năng được phát triển để điều trị bệnh bạch cầu.

Từ khóa

#Bcl-2 #chất ức chế phân tử nhỏ #MNB #apoptosis #tế bào HL-60 #caspase #bệnh bạch cầu

Tài liệu tham khảo

Haarman EG, Kaspers GJ, Pieters R, van Zantwijk CH, Broekema GJ, Hahlen K, Veerman AJ (1999) BCL-2 expression in childhood leukemia versus spontaneous apoptosis, drug induced apoptosis, and in vitro drug resistance. Adv Exp Med Biol 457:325–333 Del Principe MI, Del Poeta G, Venditti A, Buccisano F, Maurillo L, Mazzone C, Bruno A, Neri B, Irno Consalvo M, Lo Coco F, Amadori S (2005) Apoptosis and immaturity in acute myeloid leukemia. Hematology 10:25–34 Campos L, Sabido O, Viallet A, Vasselon C, Guyotat D (1999) Expression of apoptosis-controlling proteins in acute leukemia cells. Leuk Lymphoma 33:499–509 Coustan-Smith E, Kitanaka A, Pui CH, McNinch L, Evans WE, Raimondi SC, Behm FG, Arico M, Campana D (1996) Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87:1140–1146 Salomons GS, Smets LA, Verwijs-Janssen M, Hart AA, Haarman EG, Kaspers GJ, Wering EV, Der Does-Van Den Berg AV, Kamps WA (1999) Bcl-2 family members in childhood acute lymphoblastic leukemia: relationships with features at presentation, in vitro and in vivo drug response and long-term clinical outcome. Leukemia 13:1574–1580 Klumper E, Pieters R, Veerman AJ, Huismans DR, Loonen AH, Hahlen K, Kaspers GJ, van Wering ER, Hartmann R, Henze G (1995) In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 86:3861–3868 Majlessipour F, Avramis IA, Kwock R, Weinberg KI, Avrami VI (2002) The combination regimen of idarubicin and taxotere is effective against human drug-resistant leukemic cell lines. Anticancer Res 22:1361–1368 Reed JC, Pellecchia M (2005) Apoptosis-based therapies for hematologic malignancies. Blood 106:408–418 Burger H, Nooter K, Boersma AW, Kortland CJ, Stoter G (1997) Lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in testicular germ cell tumour cell lines. Int J Cancer 73:592–599 Houldsworth J, Xiao H, Murty VV, Chen W, Ray B, Reuter VE, Bosl GJ, Chaganti RS (1998) Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. Oncogene 16:2345–2349 Campos L, Sabido O, Liang H, Vasselon C, Guyotat D (1996) Expression of human Bcl-xL, an inhibitor of programmed cell death. Nature 33:335–341 Holinger EP, Chittenden T, Lutz RJ (1999) Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem 274:13298–13304 Finnegan NM, Curtin JF, Prevost G, Morgan B, Cotter TG (2001) Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bcl-2 interactions. Br J Cancer 85:115–121 Shangary S, Johnson DE (2002) Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-x(L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry 41:9485–9495 Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 97:7124–7129 Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3:173–182 Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J, Zhang KY, Hockenbery DM (2001) Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3:183–191 Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long YQ, Roller PP, Yang D, Wang S (2001) Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 44:4313–4324 Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681 Manion MK, Fry J, Schwartz PS, Hockenbery DM (2006) Small-molecule inhibitors of Bcl-2. Curr Opin Investig Drugs 7:1077–1084 Mohammad RM, Mohamed AN, Smith MR, Jawadi NS, al-Katib A (1993) A unique EBV-negative low-grade lymphoma line (WSU-FSCCL) exhibiting both t(14;18) and t(8;11). Cancer Genet Cytogenet 70:62–67 Gloeckner H, Jonuleit T, Lemke HD (2001) Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue. J Immunol Methods 252:131–138 Hsu YT, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273:10777–10783 Hong C, Kim HA, Firestone GL, Bjeldanes LF (2002) 3,3′-Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis 23:1297–1305 Dewson G, Snowden RT, Almond JB, Dyer MJ, Cohen GM (2003) Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 22:2643–2654 Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW (2001) Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci U S A 98:3012–3017 Ozgen U, Savasan S, Buck S, Ravindranath Y (2000) Comparison of DiOC(6)(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Cytometry 42:74–78 Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274:17941–17945 Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5 Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dorken B, Daniel PT (2001) Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood 97:1378–1387 Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K (2001) The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15:1022–1032 von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dorken B, Daniel PT (2003) Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 22:2236–2247 Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128 Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136 Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK (2001) Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49:1464–1474 Lee SH, Ryu SY, Kim HB, Kim MY Chun YJ (2002) Induction of apoptosis by 3,4′-dimethoxy-5-hydroxystilbene in human promyeloid leukemic HL-60 cells. Planta Med 68:123–127 Kim JH, Ju EM, Lee DK, Hwang HJ (2002) Induction of apoptosis by momordin I in promyelocytic leukemia (HL-60) cells. Anticancer Res 22:1885–1889 Hattori T, Ookawa N, Fujita R, Fukuchi K (2000) Heterodimerization of Bcl-2 and Bcl-X(L) with Bax and Bad in colorectal cancer. Acta Oncol 39:495–500 Hirotani M, Zhang Y, Fujita N, Naito M, Tsuruo T (1999) NH2-terminal BH4 domain of Bcl-2 is functional for heterodimerization with Bax and inhibition of apoptosis. J Biol Chem 274:20415–20420 St Clair EG, Anderson SJ, Oltvai ZN (1997) Bcl-2 counters apoptosis by Bax heterodimerization-dependent and -independent mechanisms in the T-cell lineage. J Biol Chem 272:29347–29355 Zha H, Aime-Sempe C, Sato T, Reed JC (1996) Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 271:7440–7444 Dirsch VM, Antlsperger DS, Hentze H, Vollmar AM (2002) Ajoene, an experimental anti-leukemic drug: mechanism of cell death. Leukemia 16:74–83 Becattini B, Culmsee C, Leone M, Zhai D, Zhang X, Crowell KJ, Rega MF, Landshamer S, Reed JC, Plesnila N, Pellecchia M (2006) Structure–activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc Natl Acad Sci U S A 103:12602–12606 Ward MW, Rehm M, Duessmann H, Kacmar S, Concannon CG, Prehn JH (2006) Real time single cell analysis of Bid cleavage and Bid translocation during caspase-dependent and neuronal caspase-independent apoptosis. J Biol Chem 281:5837–5844 Kumar S, Vaux DL (2002) Apoptosis. A cinderella caspase takes center stage. Science 297:1290–1291 Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354 Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, Roy S, Nicholson DW, Vaux DL, Bouillet P, Adams JM, Strasser A (2002) Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419:634–637 Goldie JH, Coldman AJ (1984) The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res 44:3643–3653