A note on the supersolubility of a group with ms-supersoluble factors

Ricerche di Matematica - Tập 70 - Trang 517-521 - 2020
Alexander Trofimuk1
1Department of Mathematics and Programming Technologie, Gomel Francisk Skorina State University, Gomel, Belarus

Tóm tắt

A subgroup A of a group G is called seminormal in G, if there exists a subgroup B such that $$G=AB$$ and AX is a subgroup of G for every subgroup X of B. Let G be a supersoluble group. Then it has an ordered Sylow tower of supersoluble type  $$1=G_0< G_1< \cdots < G_m=G$$ . If for every i all maximal subgroups of  $$G_{i}/G_{i-1}$$ are seminormal in  $$G/G_{i-1}$$ , then G is said to be ms-supersoluble. In this paper, we proved the supersolubility of a group $$G=AB$$ under condition that A and B are normal in G and ms-supersoluble.

Tài liệu tham khảo

Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967) Monakhov, V.S.: Introduction to the Theory of Finite Groups and Their Classes. Vyshejshaja Shkola, Minsk (2006) Robinson, D.: A Course in the Theory of Groups. Springer, Berlin (1988) Huppert, B.: Monomialle darstellung endlicher gruppen. Nagoya Math. J. 3, 93–94 (1953) Baer, R.: Classes of finite groups and their properties. Illinois J. Math. 1, 115–187 (1957) Friesen, D.: Products of normal supersolvable subgroups. Proc. Am. Math. Soc. 30(1), 46–48 (1971) Vasilyev, A.F., Vasilyeva, T.I.: On finite groups whose chief factors are simple groups. Russian Math. (Iz. VUZ) 41(11), 8–12 (1997) Su, X.: On semi-normal subgroups of finite group. J. Math. (Wuhan) 8(1), 7–9 (1988) Monakhov, V.S., Trofimuk, A.A.: Finite groups with two supersoluble subgroups. J. Group Theory. 22, 297–312 (2019)