A note on the amenability constant of Banach algebras

Maedeh Soroushmehr1
1Faculty of Mathematical Science and Computer, Kharazmi University, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Johnson B. E., Cohomology on Banach Algebras, Amer. Math. Soc., Providence RI (1972) (Mem. Amer. Math. Soc.; 127).

Johnson B. E., “Approximate diagonals and cohomology of certain annihilator Banach algebras,” Amer. J. Math., 94, 685–698 (1972).

Runde V., Lectures on Amenability, Springer-Verlag, Berlin (2002) (Lecture Notes Math.; V. 1774).

Johnson B. E., “Non-amenability of the Fourier algebra of a compact group,” J. London Math. Soc. (2), 50, No. 2, 361–374 (1994).

Runde V., “The amenability constant of the Fourier algebra,” Proc. Amer. Math. Soc., 134, No. 5, 1473–1481 (2006).

Dales H. G., Lau A. T.-M., and Strauss D., Banach Algebras on Semigroups and on Their Compactifications, Amer. Math. Soc., Providence, RI (2010) (Mem. Amer. Math. Soc.; V. 205, No. 966).

Duncan J. and Paterson A. L. T., “Amenability for discrete convolution semigroup algebras,” Math. Scand., 66, 141–146 (1990).

Stokke R., “Approximate diagonals and Folner conditions for amenable groups and semigroups,” Stud. Math., 164, 139–159 (2004).

Dales H. G., Banach Algebras and Automatic Continuity, Clarendon Press, Oxford (2000) (London Math. Soc. Monogr., V. 24).

Heagerup U., “All nuclear C*-algebras are amenable,” Invent. Math., 74, No. 2, 305–319 (1983).

Ghahramani F. and Loy R. J., “Generalized notions of amenability,” J. Funct. Anal., 208, 229–260 (2004).

Bonsall F. F. and Duncan J., Complete Normed Algebras, Springer-Verlag, Berlin (1973).

Willis G. A., “Probability measures on groups and some related ideals in group algebras,” J. Funct. Anal., 92, 202–263 (1990).