A note on nodal determinantal hypersurfaces
Tóm tắt
We prove that a general determinantal hypersurface of dimension 3 is nodal. Moreover, in terms of Chern classes associated with bundle morphisms, we derive a formula for the intersection homology Euler characteristic of a general determinantal hypersurface.
Tài liệu tham khảo
Batyrev, V.V.: Stringy Hodge numbers of varieties with Gorenstein canonical singularities. In: Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), pp. 1–32. World Sci. Publ., River Edge (1998)
Brunner, I., Lynker, M., Schimmrigk, R.: Unification of M- and F-theory Calabi–Yau fourfold vacua. Nucl. Phys. B 498(1–2), 156–174 (1997). https://doi.org/10.1016/S0550-3213(97)89481-3
Cheltsov, I.: Nonrational nodal quartic threefolds. Pac. J. Math. 226(1), 65–81 (2006). https://doi.org/10.2140/pjm.2006.226.65
Cheltsov, I., Grinenko, M.: Birational rigidity is not an open property. Bull. Korean Math. Soc. 54(5), 1485–1526 (2017)
Corti, A., Haskins, M., Nordström, J., Pacini, T.: Asymptotically cylindrical Calabi–Yau 3-folds from weak Fano 3-folds. Geom. Topol. 17(4), 1955–2059 (2013). https://doi.org/10.2140/gt.2013.17.1955
Cynk, S., Rams, S.: On Calabi–Yau threefolds associated to a web of quadrics. Forum Math. 27(2), 699–734 (2015). https://doi.org/10.1515/forum-2012-0056
Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4404-2
de Fernex, T., Lupercio, E., Nevins, T., Uribe, B.: Stringy Chern classes of singular varieties. Adv. Math. 208(2), 597–621 (2007). https://doi.org/10.1016/j.aim.2006.03.005
Fulton, W.: Young Tableaux, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997). With applications to representation theory and geometry
Fulton, W.: Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, vol. 2, 2nd edn. Springer, Berlin (1998). https://doi.org/10.1007/978-1-4612-1700-8
Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72(1), 77–129 (1983). https://doi.org/10.1007/BF01389130
Green, P.S., Hübsch, T.: Connecting moduli spaces of Calabi–Yau threefolds. Commun. Math. Phys. 119(3), 431–441 (1988)
Hamm, H.: Lokale topologische Eigenschaften komplexer Räume. Math. Ann. 191, 235–252 (1971). https://doi.org/10.1007/BF01578709
Kaloghiros, A.: A classification of terminal quartic 3-folds and applications to rationality questions. Math. Ann. 354(1), 263–296 (2012). https://doi.org/10.1007/s00208-011-0658-z
Kawamata, Y.: Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces. Ann. Math. (2) 127(1), 93–163 (1988). https://doi.org/10.2307/1971417
Kirwan, F., Woolf, J.: An Introduction to Intersection Homology Theory, 2nd edn. Chapman & Hall, Boca Raton (2006). https://doi.org/10.1201/b15885
Laurentiu, M.: On Milnor classes of complex hypersurfaces. In: Topology of Stratified Spaces, Math. Sci. Res. Inst. Publ., vol. 58, pp. 161–175. Cambridge Univ. Press, Cambridge (2011)
Namikawa, Y., Steenbrink, J.H.M.: Global smoothing of Calabi–Yau threefolds. Invent. Math. 122(2), 403–419 (1995). https://doi.org/10.1007/BF01231450
Parusiński, A., Pragacz, P.: Chern–Schwartz–MacPherson classes and the Euler characteristic of degeneracy loci and special divisors. J. Am. Math. Soc. 8(4), 793–817 (1995). https://doi.org/10.2307/2152829
Parusiński, A., Pragacz, P.: A formula for the Euler characteristic of singular hypersurfaces. J. Algebraic Geom. 4(2), 337–351 (1995)
Seade, J., Suwa, T.: An adjunction formula for local complete intersections. Int. J. Math. 9(6), 759–768 (1998). https://doi.org/10.1142/S0129167X98000324
Sz-Sheng, W.: On the connectedness of the standard web of Calabi–Yau 3-folds and small transitions. Asian J. Math. 22(6), 981–1004 (2018). https://doi.org/10.4310/AJM.2018.v22.n6.a1
Yokura, S.: Motivic Milnor classes. J. Singul. 1, 39–59 (2010). https://doi.org/10.5427/jsing.2010.1c