Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một lưu ý về các định lý đa chức năng ngầm
Tóm tắt
Bài báo chủ yếu dành cho việc nghiên cứu các định lý đa chức năng ngầm theo dạng Fréchet coderivative trong không gian Asplund. Nó làm sắc nét định lý đa chức năng ngầm nổi tiếng của Ledyaev và Zhu (Phân tích Giá trị Tập hợp, 7, 209–238, 1999) cũng như nhiều ấn phẩm gần đây về lĩnh vực quan trọng này.
Từ khóa
#định lý đa chức năng ngầm #Fréchet coderivative #không gian Asplund #Ledyaev #ZhuTài liệu tham khảo
Azé, D., Benahmed, S.: On implicit multifunction theorems. Set Valued Anal. 16, 129–155 (2008)
Chieu, N.H., Yao, J.-C., Yen, N.D.: Relationships between Robinson metric regularity and Lipschitz-like behavior of implicit multifunctions. Nonlinear Anal. 72, 3594–3601 (2010)
Chuong, T.D.: Lipschitz-like property of an implicit multifunction and its applications. Nonlinear Anal. 74, 6256–6264 (2011)
Chuong, T.D., Kruger, A.Y., Yao, J.-C.: Calmness of efficient solution maps in parametric vector optimization. J. Global Optim. 51, 677–688 (2011)
Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set Valued Anal. 12, 79–109 (2004)
Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings. A view from variational analysis. Springer, Dordrecht (2009)
Durea, M.: Openness properties for parametric set-valued mappings and implicit multifunctions. Nonlinear Anal. 72, 571–579 (2010)
Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1970)
Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carolin. Math. Phys. 30, 51–56 (1989)
Ioffe, A.D.: Metric regularity and subdifferential calculus. Russian Math. Surv. 55, 501–558 (2000)
Jourani, A.: Hoffman’s error bound, local controllability, and sensitivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)
Lee, G.M., Tam, N.N., Yen, N.D.: Normal coderivative for multifunctions and implicit function theorems. J. Math. Anal. Appl. 338, 11–22 (2008)
Lee, G.M., Yen, N.D.: Fréchet and normal coderivatives of implicit multifunctions. Appl. Anal. 90, 1011–1027 (2011)
Ledyaev, Y.S., Zhu, Q.J.: Implicit multifunction theorems. Set Valued Anal. 7, 209–238 (1999)
Li, G., Mordukhovich, B.S: Hölder metric subregularity with applications to proximal point method. http://www.optimization-online.org/DB_FILE/2012/02/3340.pdf
Mordukhovich, B.S.: Metric approximations and necessary conditions for optimality for general classes of nonsmooth extremal problems. Soviet Math. Dokl. 254, 1072–1076 (1980)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Springer, Berlin (2006)
Ngai, H.V., Théra, M.: Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization. Set Valued Anal. 12, 195–223 (2004)
Ngai, H.V., Tron, N.H., Théra, M.: Implicit multifunction theorems in complete metric spaces. Math. Program (2012, to appear)
Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)
Robinson, S.M.: Stability theory for systems of inequalities, I: Linear systems. SIAM J. Numer. Anal. 12, 754–769 (1975)
Robinson, S.M.: Stability theory for systems of inequalities, II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)
Yen, N.D., Yao, J.-C.: Point-based sufficient conditions for metric regularity of implicit multifunctions. Nonlinear Anal. 70, 2806–2815 (2009)
Zheng, X.Y., Ng, K.F.: Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. SIAM J. Optim. 20, 2119–2136 (2010)