A note on global regularity in optimal transportion

Bulletin of Mathematical Sciences - Tập 3 - Trang 551-557 - 2013
Neil S. Trudinger1
1Centre for Mathematics and its Applications, Australian National University, Canberra, Australia

Tóm tắt

We indicate how recent work of Figalli–Kim–McCann and Vetois can be used to improve previous results of Trudinger and Wang on classical solvability of the second boundary value problem for Monge–Ampère type partial differential equations arising in optimal transportation together with the global regularity of the associated optimal mappings.

Tài liệu tham khảo

Caffarelli, L.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5, 99–104 (1992) Caffarelli, L.: Boundary regularity of maps with convex potentials II. Ann. Math. 144, 453–496 (1996) Delanoë, Ph.: Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator. Ann. Inst. Henri Poincaré Analyse Non Linéaire 8, 443–457 (1991) Figalli, A., Kim, Y.-H., McCann, R.J.: Hölder continuity and injectivity of optimal maps. Arch. Rat. Mech. Anal. 209, 747–795 (2013) Figalli, A., Loeper, G.: \(C^1\) regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two. Calc. Var. Partial Differential Equations 35, 537–550 (2009) Jiang, F., Trudinger, N.S., Yang, X.-P.: On the Dirichlet Problem for Monge-Ampère type equations. Calc. Var. Partial Differ. Equ. (to appear). doi:10.1007/s00526-013-0619-3 Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer, Berlin (1983) Kim, Y.-H., McCann, R.J.: Continuity, curvature and the general covariance of optimal transportation. J. Eur. Math. Soc. 12, 1009–1040 (2010) Kitagawa, J.: A parabolic flow towards solutions of the optimal transportation problem on domains with boundary. J. Reine Angew. Math. 672, 127–160 (2012) Lions, P.-L., Trudinger, N.S., Urbas, J.: Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. 39, 539–563 (1985) Lions, P.-L., Trudinger, N.S., Urbas, J.: Neumann problem for equations of Monge-Ampère type. Proc. Centre Math. Anal. 10, 135–140 (1985) Liu, J., Trudinger, N.: On Pogorelov estimates for Monge-Ampere type equations. Discret. Contin. Dyn. Sys. 28, 1121–1135 (2010) Liu, J., Trudinger, N.S., Wang, X.-J.: Interior \(C^{2,\alpha }\) regularity for potential functions in optimal transportation. Comm. Partial Differ. Equ. 35, 165–184 (2010) Loeper, G.: On the regularity of solutions of optimal transportation problems. Acta Math. 202, 241–283 (2009) Ma, X.-N., Trudinger, N.S., Wang, X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Rat. Mech. Anal. 177, 151–183 (2005) Rachev, S.T., Ruschendorff, L.: Mass transportation problems. Springer, Berlin (1998) Trudinger, N.S.: Recent developments in elliptic partial differential equations of Monge-Ampère type. Int. Congress Math. III, 291–301 (2006, Eur. Math. Soc., Zürich) Trudinger. N.S.: On the prescribed Jacobian equation, Gakuto Intl. Series, Math. Sci. Appl. 20 (2008), Proc. Intl. Conf. for the 25th Anniversary of Viscosity, Solutions, 243–255 Trudinger, N.S., Wang, X.-J.: The Monge-Ampère equation and its geometric applications. In: Handbook of geometric analysis. International Press, USA, pp. 467–524 (2008) Trudinger, N.S., Wang, X.J.: On the second boundary value problem for Monge-Ampère type equations and optimal transportation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. 5 8, 143–174 (2009) Trudinger, N.S., Wang, X.-J.: On strict convexity and continuous differentiability of potential functions in optimal transportation. Arch. Rat. Mech. \(\dot{{\rm A}}\)nal. 192, 403–418 (2009) Urbas, J.: On the second boundary value problem for equations of Monge-Ampère type. J. Reine Angew. Math. 487, 115–124 (1997) Urbas, J.: Mass transfer problems. University of Bonn, Lecture Notes (1998) Vetois, J.: Continuity and injectivity of optimal maps, preprint (2011) Villani, C.: Topics in optimal transportation. Amer. Math. Soc. (2003) Villani, C.: Optimal transportation, old and new. Springer, Berlin (2008) Wang, X.-J.: On the design of a reflector antenna. Inverse Prob. 12, 351–375 (1996)