A note on functional equations connected with the Cauchy mean value theorem

Radosław Łukasik1
1Institute of Mathematics, University of Silesia, Katowice, Poland

Tóm tắt

The aim of this paper is to describe the solution (f, g) of the equation $$\begin{aligned}{}[f(x)-f(y)]g'(\alpha x+(1-\alpha )y)= [g(x)-g(y)]f'(\alpha x+(1-\alpha )y),\ x,y\in I, \end{aligned}$$ where $$I\subset \mathbb {R}$$ is an open interval, $$f,g:I\rightarrow \mathbb {R}$$ are differentiable, $$\alpha $$ is a fixed number from (0, 1).

Từ khóa


Tài liệu tham khảo

Aczél, J.: A mean value property of the derivative of quadratic polynomials-without mean values and derivatives. Math. Mag. 58(1), 42–45 (1985) Balogh, Z.M., Ibrogimov, O.O., Mityagin, B.S.: Functional equations and the Cauchy mean value theorem. Aequ. Math. 90, 683–697 (2016) Haruki, S.: A property of quadratic polynomials. Am. Math. Monthly 86(7), 577–579 (1979) Lundberg, A.: A rational Sûto equation. Aequ. Math. 57, 254–277 (1999) Lundberg, A.: Sequential derivatives and their application to a Sûto equation. Aequ. Math. 61, 48–59 (2001) Sahoo, P.K., Riedel, T.: Mean Value Theorems and Functional Equations. World Scientific Publishing Co., Inc., River Edge (1998)