A note on bifurcations from eigenvalues of the Dirichlet-Laplacian with arbitrary multiplicity

Simão Correia1, Mário Figueira2
1Department of Mathematics, Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
2CMAF-CIO, Universidade de Lisboa, Campo Grande, Lisbon, Portugal

Tóm tắt

In this short note, we consider the elliptic problem $$\begin{aligned} \lambda \phi + \Delta \phi = \eta |\phi |^\sigma \phi ,\quad \phi \big |_{\partial \Omega }=0,\quad \lambda , \eta \in {{\mathbb {C}}}, \end{aligned}$$ on a smooth domain $$\Omega \subset {{\mathbb {R}}}^N$$ , $$N\geqslant 1$$ . The presence of complex coefficients, motivated by the study of complex Ginzburg-Landau equations, breaks down the variational structure of the equation. We study the existence of nontrivial solutions as bifurcations from the trivial solution. More precisely, we characterize the bifurcation branches starting from eigenvalues of the Dirichlet-Laplacian of arbitrary multiplicity. This allows us to discuss the nature of such bifurcations in some specific cases. We conclude with the stability analysis of these branches under the complex Ginzburg-Landau flow.

Tài liệu tham khảo

Ambrosetti, Antonio, Arcoya, David: An Introduction to Nonlinear Functional Analysis and Elliptic Problems, vol. 82. Birkhäuser Boston Ltd, Boston, MA (2011) Ambrosetti, Antonio, Malchiodi, Andrea: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge studies in advanced mathematics, vol. 104. Cambridge University Press, Cambridge (2007) Ambrosetti, Antonio, Prodi, Giovanni: A primer of nonlinear analysis. Cambridge studies in advanced mathematics, vol. 34. Cambridge University Press, Cambridge (1993) Cazenave, Thierry, Dickstein, Flávio., Weissler, Fred B.: Finite-time blowup for a complex Ginzburg-Landau equation. SIAM J. Math. Anal. 45(1), 244–266 (2013) Cazenave, Thierry, Dickstein, Flávio., Weissler, Fred B.: Standing waves of the complex Ginzburg-Landau equation. Nonlinear Anal. 103, 26–32 (2014) Cipolatti, Rolci, Dickstein, Flávio., Puel, Jean-Pierre.: Existence of standing waves for the complex Ginzburg-Landau equation. J. Math. Anal. Appl. 422(1), 579–593 (2015) Clarke, F.H.: Classics in Applied Mathematics. In: Optimization and Nonsmooth Analysis, vol. 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition (1990) Correia, Simão, Figueira, Mário.: Some stability results for the complex Ginzburg-Landau equation. Commun. Contemp. Math. 22(8), 1950038 (2020) Correia, Simão, Figueira, Mário.: A generalized complex Ginzburg-Landau equation: global existence and stability results. Commun. Pure Appl. Anal. 20(5), 2021–2038 (2021) Crandall, Michael G., Rabinowitz, Paul H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971) Damascelli, Lucio: On the nodal set of the second eigenfunction of the Laplacian in symmetric domains in \({\mathbb{R} }^{N}\). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. Lincei Mat. Appl. 11(3), 175–181 (2000) Dancer, E.N.: Bifurcation theory in real Banach space. Proc. Lond. Math. Soc. 3(23), 699–734 (1971) Dancer, E.N.: On the existence of bifurcating solutions in the presence of symmetries. Proc. Roy. Soc. Edinb. Sect. A 85(3–4), 321–336 (1980) del Pino, Manuel, García-Melián, Jorge, Musso, Monica: Local bifurcation from the second eigenvalue of the Laplacian in a square. Proc. Am. Math. Soc. 131(11), 3499–3505 (2003) Doering, Charles R., Gibbon, John D., Holm, Darryl D., Nicolaenko, Basil: Low-dimensional behaviour in the complex Ginzburg-Landau equation. Nonlinearity 1(2), 279–309 (1988) Doering, Charles R., Gibbon, John D., Levermore, C David: Weak and strong solutions of the complex Ginzburg-Landau equation. Phys. D 71(3), 285–318 (1994) Engel, Klaus-Jochen., Nagel, Rainer: One-Parameter Semigroups for Linear Evolution Equations. Graduate texts in mathematics, vol. 194. Springer-Verlag, New York (2000) Ginibre, J., Velo, G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods. Phys. D 95(3–4), 191–228 (1996) Ginibre, J., Velo, G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods. Commun. Math. Phys. 187(1), 45–79 (1997) Henry, Daniel: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer-Verlag, Berlin-New York (1981) Krasnosel’skii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. A Pergamon Press Book. The Macmillan Company, New York, Translated by A. H. Armstrong; translation edited by Burlak, J. (1964) Masmoudi, Nader, Zaag, Hatem: Blow-up profile for the complex Ginzburg-Landau equation. J. Funct. Anal. 255(7), 1613–1666 (2008) Mielke, A.: The Ginzburg-Landau equation in its role as a modulation equation. In: Handbook of Dynamical Systems, vol. 2, pp. 759–834. North-Holland, Amsterdam (2002) Miyamoto, Yasuhito: Global branches of sign-changing solutions to a semilinear Dirichlet problem in a disk. Adv. Differ. Equ. 16(7–8), 747–773 (2011) Mugnai, Dimitri, Pistoia, Angela: On the exact number of bifurcation branches in a square and in a cube. Commun. Appl. Nonlinear Anal. 14(2), 79–100 (2007) Okazawa, Noboru, Yokota, Tomomi: Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discret. Contin. Dyn. Syst. 28(1), 311–341 (2010) Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)