A normal contact force approach for viscoelastic spheres of the same material

Powder Technology - Tập 350 - Trang 51-61 - 2019
B. Jian1, G.M. Hu1, Z.Q. Fang1, H.J. Zhou1, R. Xia1,2
1Department of Mechanical Engineering, Faculty of Engineering, Wuhan University, Wuhan 430072, China
2Hubei Key Laboratory of Province for Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China

Tài liệu tham khảo

Cundall, 1979, Discrete numerical-model for granular assemblies, Geotechnique, 29, 47, 10.1680/geot.1979.29.1.47 Tsuji, 1992, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol., 71, 239, 10.1016/0032-5910(92)88030-L Tsuji, 1993, Discrete particle simulation of two dimensional fluidized bed, Powder Technol., 77, 79, 10.1016/0032-5910(93)85010-7 Olsson, 2012, On the effect of particle size distribution in cold powder compaction, ASME. J. Appl. Mech., 79, 10.1115/1.4006382 Olsson, 2013, A numerical analysis of cold powder compaction based on micromechanical experiments, Powder Technol., 243, 71, 10.1016/j.powtec.2013.03.040 Weerasekara, 2013, The contribution of DEM to the science of comminution, Powder Technol., 248, 3, 10.1016/j.powtec.2013.05.032 Fairhurst, 2017, Some challenges of deep mining, Engineering, 3, 527, 10.1016/J.ENG.2017.04.017 Sakai, 2016, How should the discrete element method be applied in industrial systems?: a review, KONA Powder Part. J., 33, 169, 10.14356/kona.2016023 Johnson, 1987 Hunt, 1975, Coefficient of restitution interpreted as damping in vibroimpact, J. Appl. Mech., 42, 440, 10.1115/1.3423596 Zhang, 1996, The calculation of contact forces between particles using spring and damping models, Powder Technol., 88, 59, 10.1016/0032-5910(96)03104-X Hu, 2011, On the determination of the damping coefficient of non-linear spring-dashpot system to model Hertz contact for simulation by discrete element method, J. Comput., 6, 984, 10.4304/jcp.6.5.984-988 Jankowski, 2006, Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding, Earthq. Eng. Struct. Dyn., 35, 517, 10.1002/eqe.537 Kruggel-Emden, 2007, Review and extension of normal force models for the discrete element method, Powder Technol., 171, 157, 10.1016/j.powtec.2006.10.004 Zdancevicius, 2017, Improvement of viscoelastic damping for the Hertz contact of particles due to impact velocity, Procedia Eng., 172, 1286, 10.1016/j.proeng.2017.02.156 Landau, 1986 Lee, 1960, The contact problem for viscoelastic bodies, J. Appl. Mech., 27, 438, 10.1115/1.3644020 Hunter, 1960, The Hertz problem for a rigid spherical indenter and a viscoelastic half-space, J. Mech. Phys. Solids, 8, 219, 10.1016/0022-5096(60)90028-4 Graham, 1965, The contact problem in the linear theory of viscoelasticity, Int. J. Eng. Sci., 3, 27, 10.1016/0020-7225(65)90018-2 Calvit, 1967, Numerical solution of the problem of impact of a rigid sphere onto a linear viscoelastic half-space and comparison with experiment, Int. J. Solids Struct., 3, 951, 10.1016/0020-7683(67)90021-2 Olsson, 2019, A contact model for the normal force between viscoelastic particles in discrete element simulations, Powder Technol., 342, 985, 10.1016/j.powtec.2018.10.022 Kuwabara, 1987, Restitution coefficient in a collision between two spheres, Jpn. J. Appl. Phys., 26, 1230, 10.1143/JJAP.26.1230 Brilliantov, 1996, Model for collisions in granular gases, Phys. Rev. E, 53, 5382, 10.1103/PhysRevE.53.5382 Zheng, 2012, Finite element analysis of the contact forces between a viscoelastic sphere and rigid plane, Powder Technol., 226, 130, 10.1016/j.powtec.2012.04.032 Brilliantov, 2015, A dissipative force between colliding viscoelastic bodies: rigorous approach, EPL (Europhys. Lett.), 109, 10.1209/0295-5075/109/14005 Christensen, 1982 Cross, 1999, The bounce of a ball, Am. J. Phys., 67, 222, 10.1119/1.19229 Gurtin, 1962, On the linear theory of viscoelasticity, Arch. Ration. Mech. An., 11, 291, 10.1007/BF00253942 Lee, 1963, Solution of viscoelastic stress analysis problems using measured creep or relaxation functions, J. Appl. Mech., 30, 127, 10.1115/1.3630057