A nonmonotone derivative-free algorithm for nonlinear complementarity problems based on the new generalized penalized Fischer–Burmeister merit function

Jianguang Zhu1, Hongwei Liu1, Changhe Liu2, Weijie Cong3
1Department of Mathematics, Xidian University, Xi’an, China
2Department of Mathematics, Xidian University, Xi'an 710071, China
3School of Science, Xi’an University of Posts and Telecommunications, Xi’an, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

Harker, P.T., Pang, J.S.: Finite dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

Mangasarian, O.L.: Equivalence of the complementarity problems to a system of nonlinear equations. SIAM J. Appl. Math. 31, 89–92 (1976)

Yamashita, N., Fukushima, M.: Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems. Math. Program. 76, 469–491 (1997)

Kanzow, C., Kleinmichel, H.: A new class of semismooth Newton method for nonlinear complementarity problems. Comput. Optim. Appl. 11, 227–251 (1998)

Kanzow, C.: Some equation-based methods for the nonlinear complementarity problem. Optim. Method Softw. 3, 327–340 (1994)

Chen, B.: Error bounds for R0-type and monotone nonlinear complementarity problems. J. Optim. Theory Appl. 108, 297–316 (2001)

Chen, X.: Smoothing methods for complementarity problems and their applications: a survey. J. Oper. Res. Soc. Jpn. 43, 32–47 (2000)

Mangasarian, O.L., Solodov, M.V.: A linearly convergent descent method for strongly monotone complementarity problems. Comput. Optim. Appl. 14, 5–16 (1999)

Jiang, H.: Unconstrained minimization approaches to nonlinear complementarity problems. J. Global Optim. 9, 169–181 (1996)

Geiger, C., Kanzow, C.: On the resolution of monotone complementarity problems. Comput. Optim. Appl. 5, 155–173 (1996)

Hu, S.L., Hang, Z.H., Chen, J.S.: Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems. J. Comput. Appl. Math. 230, 69–82 (2009)

Chen, J.S., Gao, H.T., Pan, S.H.: An R-linearly convergent derivative-free algorithm for nonlinear complementarity problems based on the generalized Fischer–Burmeister merit function. J. Comput. Appl. Math. 232, 455–471 (2009)

Yamada, K., Yamashita, N., Fukushima, M.: A new derivative-free descent method for the nonlinear complementarity problems. In: Pillo, G.D., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics, pp. 463–487. Kluwer Academic Publishers, Netherlands (2000)

Chen, B., Chen, X., Kanzow, C.: A penalized Fischer–Burmeister NCP-functions. Math. Program. 88, 211–216 (2000)

Fischer, A.: Solution of monotone complementarity problems with Lipschitzian functions. Math. Program. 76, 513–532 (1997)

Chen, J.S., Pan, S.H.: A family of NCP-functions and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40, 389–404 (2008)

Chen, J.S.: On some NCP-functions based on the generalized Fischer–Burmeister function. Asia-Pac. J. Oper. Res. 24, 401–420 (2007)

Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

Billups, S.C., Dirkse, S.P., Soares, M.C.: A comparison of algorithms for large scale mixed complementarity problems. Comput. Optim. Appl. 7, 3–25 (1977)