A nonmonotone derivative-free algorithm for nonlinear complementarity problems based on the new generalized penalized Fischer–Burmeister merit function
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)
Harker, P.T., Pang, J.S.: Finite dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)
Mangasarian, O.L.: Equivalence of the complementarity problems to a system of nonlinear equations. SIAM J. Appl. Math. 31, 89–92 (1976)
Yamashita, N., Fukushima, M.: Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems. Math. Program. 76, 469–491 (1997)
Kanzow, C., Kleinmichel, H.: A new class of semismooth Newton method for nonlinear complementarity problems. Comput. Optim. Appl. 11, 227–251 (1998)
Kanzow, C.: Some equation-based methods for the nonlinear complementarity problem. Optim. Method Softw. 3, 327–340 (1994)
Chen, B.: Error bounds for R0-type and monotone nonlinear complementarity problems. J. Optim. Theory Appl. 108, 297–316 (2001)
Chen, X.: Smoothing methods for complementarity problems and their applications: a survey. J. Oper. Res. Soc. Jpn. 43, 32–47 (2000)
Mangasarian, O.L., Solodov, M.V.: A linearly convergent descent method for strongly monotone complementarity problems. Comput. Optim. Appl. 14, 5–16 (1999)
Jiang, H.: Unconstrained minimization approaches to nonlinear complementarity problems. J. Global Optim. 9, 169–181 (1996)
Geiger, C., Kanzow, C.: On the resolution of monotone complementarity problems. Comput. Optim. Appl. 5, 155–173 (1996)
Hu, S.L., Hang, Z.H., Chen, J.S.: Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems. J. Comput. Appl. Math. 230, 69–82 (2009)
Chen, J.S., Gao, H.T., Pan, S.H.: An R-linearly convergent derivative-free algorithm for nonlinear complementarity problems based on the generalized Fischer–Burmeister merit function. J. Comput. Appl. Math. 232, 455–471 (2009)
Yamada, K., Yamashita, N., Fukushima, M.: A new derivative-free descent method for the nonlinear complementarity problems. In: Pillo, G.D., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics, pp. 463–487. Kluwer Academic Publishers, Netherlands (2000)
Chen, B., Chen, X., Kanzow, C.: A penalized Fischer–Burmeister NCP-functions. Math. Program. 88, 211–216 (2000)
Fischer, A.: Solution of monotone complementarity problems with Lipschitzian functions. Math. Program. 76, 513–532 (1997)
Chen, J.S., Pan, S.H.: A family of NCP-functions and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40, 389–404 (2008)
Chen, J.S.: On some NCP-functions based on the generalized Fischer–Burmeister function. Asia-Pac. J. Oper. Res. 24, 401–420 (2007)
Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)