A nonlocal p-Laplacian evolution equation with Neumann boundary conditions

Journal de Mathématiques Pures et Appliquées - Tập 90 Số 2 - Trang 201-227 - 2008
F. Andreu1, José M. Mazón2, Julio D. Rossi3,4, J. Toledo2
1Departament de Matemàtica Aplicada, Universitat de València, Valencia, Spain
2Departament d’Anàlisi Matemàtica, Universitat de València, Valencia, Spain
3Departamento de Matemática, FCEyN, UBA (1428) Buenos Aires, Argentina
4IMDEA Matematicas, C-IX, Universitat Autonoma, Campus Cantoblanco, Madrid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambrosio, 2000, Functions of Bounded Variation and Free Discontinuity Problems, 10.1093/oso/9780198502456.001.0001

Andreu, 2001, Minimizing total variation flow, Differential Integral Equations, 14, 321, 10.57262/die/1356123331

Andreu, 2004, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, vol. 223

Andreu, 2006, A degenerate elliptic–parabolic problem with nonlinear dynamical boundary conditions, Interfaces and Free Boundaries, 8, 447, 10.4171/IFB/151

Andreu, 1997, Quasilinear elliptic and parabolic equations in L1 with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7, 183

Andreu, 1999, Existence and uniqueness for a degenerate parabolic equation with L1-data, Trans. Amer. Math. Soc., 351, 285, 10.1090/S0002-9947-99-01981-9

F. Andreu, J.M. Mazón, J.D. Rossi, J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations, J. Evol. Eqns., in press

Bates, 1999, An integrodifferential model for phase transitions: Stationary solutions in higher dimensions, J. Statist. Phys., 95, 1119, 10.1023/A:1004514803625

Bates, 1997, Travelling waves in a convolution model for phase transitions, Arch. Rat. Mech. Anal., 138, 105, 10.1007/s002050050037

Bénilan, 1991, Completely accretive operators, vol. 135, 41

Ph. Bénilan, M.G. Crandall, A. Pazy, Evolution Equations Governed by Accretive Operators, in press

Bourgain, 2001, Another look at Sobolev spaces, 439

Brezis, 1968, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier, 18, 115, 10.5802/aif.280

Buades, 2006, Neighborhood filters and PDE's, Numer. Math., 150, 1, 10.1007/s00211-006-0029-y

Carrillo, 2005, Spatial effects in discrete generation population models, J. Math. Biol., 50, 161, 10.1007/s00285-004-0284-4

Chasseigne, 2006, Asymptotic behaviour for nonlocal diffusion equations, J. Math. Pures Appl., 86, 271, 10.1016/j.matpur.2006.04.005

Chen, 1997, Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations, Adv. Differential Equations, 2, 125, 10.57262/ade/1366809230

Cortazar, 2005, A non-local diffusion equation whose solutions develop a free boundary, Ann. Henri Poincaré, 6, 269, 10.1007/s00023-005-0206-z

Cortazar, 2007, Boundary fluxes for non-local diffusion, J. Differential Equations, 234, 360, 10.1016/j.jde.2006.12.002

Cortazar, 2008, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rat. Mech. Anal., 187, 137, 10.1007/s00205-007-0062-8

Crandall, 1986, Nonlinear semigroups and evolution governed by accretive operators, vol. 45, 305

Fife, 2003, Some nonclassical trends in parabolic and parabolic-like evolutions, 153

Fife, 1998, A convolution model for interfacial motion: The generation and propagation of internal layers in higher space dimensions, Adv. Differential Equations, 3, 85, 10.57262/ade/1366399906

Kindermann, 2005, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4, 1091, 10.1137/050622249

Rudin, 1992, Nonlinear total variation based noise removal algorithms, Physica D, 60, 259, 10.1016/0167-2789(92)90242-F

Silvestre, 2006, Hölder estimates for solutions of integrodifferential equations like the fractional Laplace, Indiana Univ. Math. J., 55, 1155, 10.1512/iumj.2006.55.2706

C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in: Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 1998, pp. 839–846

Wang, 2002, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183, 434, 10.1006/jdeq.2001.4129

Yaroslavsky, 1985

Yaroslavsky, 1996

Zhang, 2004, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks, J. Differential Equations, 197, 162, 10.1016/S0022-0396(03)00170-0