A non-uniform mesh scheme for compressible flow
Tài liệu tham khảo
Roe, 1981, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357, 10.1016/0021-9991(81)90128-5
Glaister, 1988, An approximate linearised Riemann solver for real gases, J. Comput. Phys., 74, 382, 10.1016/0021-9991(88)90084-8
Lax, 1960, Systems of conservation laws, Comm. Pure Appl. Math., 13, 217, 10.1002/cpa.3160130205
Sod, 1978, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 10.1016/0021-9991(78)90023-2
Cameron, 1966, An analysis of the errors caused by using artificial viscosity terms to represent steady-state shock waves, J. Comput. Phys., 1, 1, 10.1016/0021-9991(66)90009-X
Harten, 1983, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357, 10.1016/0021-9991(83)90136-5
Roe, 1982, Algorithms for advection and shock problems
Sweby, 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995, 10.1137/0721062
Roe, 1984, Efficient construction and utilisation of approximate Riemann solutions, 499
Glaister, 1988, Flux-difference splitting for the Euler equations with axial symmetry, J. Eng. Math., 22.2, 107, 10.1007/BF02383596
Warming, 1976, Upwind second order difference and applications in aerodynamics, AIAA J., 14, 1241, 10.2514/3.61457
Lax, 1972, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, 11
Sweby, 1982, A modification of Roe's scheme for entropy satisfying solutions of scalar non-linear conservation laws
Noh, 1986, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., 72, 78, 10.1016/0021-9991(87)90074-X