A non-uniform mesh scheme for compressible flow

Computers & Mathematics with Applications - Tập 21 - Trang 39-62 - 1991
P. Glaister1
1Department of Mathematics, P.O. Box 220, University of Reading Whiteknights, Reading, Berks., RG6 2AX, United Kingdom

Tài liệu tham khảo

Roe, 1981, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357, 10.1016/0021-9991(81)90128-5 Glaister, 1988, An approximate linearised Riemann solver for real gases, J. Comput. Phys., 74, 382, 10.1016/0021-9991(88)90084-8 Lax, 1960, Systems of conservation laws, Comm. Pure Appl. Math., 13, 217, 10.1002/cpa.3160130205 Sod, 1978, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 10.1016/0021-9991(78)90023-2 Cameron, 1966, An analysis of the errors caused by using artificial viscosity terms to represent steady-state shock waves, J. Comput. Phys., 1, 1, 10.1016/0021-9991(66)90009-X Harten, 1983, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357, 10.1016/0021-9991(83)90136-5 Roe, 1982, Algorithms for advection and shock problems Sweby, 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995, 10.1137/0721062 Roe, 1984, Efficient construction and utilisation of approximate Riemann solutions, 499 Glaister, 1988, Flux-difference splitting for the Euler equations with axial symmetry, J. Eng. Math., 22.2, 107, 10.1007/BF02383596 Warming, 1976, Upwind second order difference and applications in aerodynamics, AIAA J., 14, 1241, 10.2514/3.61457 Lax, 1972, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, 11 Sweby, 1982, A modification of Roe's scheme for entropy satisfying solutions of scalar non-linear conservation laws Noh, 1986, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., 72, 78, 10.1016/0021-9991(87)90074-X