A non-local semilinear eigenvalue problem

Fractional Calculus and Applied Analysis - Tập 25 - Trang 2193-2221 - 2022
Giovanni Franzina1, Danilo Licheri2
1Istituto per le Applicazioni del Calcolo “M. Picone,”, Consiglio Nazionale delle Ricerche, Rome, Italy
2Dipartimento di Matematica e Informatica, Università degli studi di Cagliari, Cagliari, Italy

Tóm tắt

We prove that positive solutions of the fractional Lane–Emden equation with homogeneous Dirichlet boundary conditions satisfy pointwise estimates in terms of the best constant in Poincaré’s inequality on all open sets, and are isolated in $$L^1$$ on smooth bounded ones, whence we deduce the isolation of the first non-local semilinear eigenvalue.

Tài liệu tham khảo

Anello, G., Faraci, F., Iannizzotto, A.: On a problem of Huang concerning best constants in Sobolev embeddings. Ann. Mat. Pura Appl. 194(3), 767–779 (2015) Bonforte, M., Figalli, A., Vázquez, J.L.: Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Calc. Var. Partial Differ. Equ. 57(2), 1–43 (2018). (Article No. 57) Brasco, L.: On principal frequencies and isoperimetric ratios in convex sets. Ann. Fac. Sci. Toulouse Math. (6) 29(4), 977–1005 (2020) Brasco, L., Cinti, E.: On fractional Hardy inequalities in convex sets. Discrete Contin. Dyn. Syst. 38(8), 4019–4040 (2018) Brasco, L., De Philippis, G., Franzina, G.: Positive solutions to the sublinear Lane–Emden equation are isolated. Commun. Partial Differ. Equ. 46(10), 1940–1972 (2021) Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37(3), 769–799 (2014) Brasco, L., Franzina, G.: An overview on constrained critical points of Dirichlet integrals. Rend. Semin. Mat. Univ. Politec. Torino 78(2), 7–50 (2020) Brasco, L., Franzina, G., Ruffini, B.: Schrödinger operators with negative potentials and Lane–Emden densities. J. Funct. Anal. 274(6), 1825–1863 (2018) Brasco, L., Gómez-Castro, D., Vázquez, J.L.: Characterisation of homogeneous fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 60(2), 60 (2021) Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound. 16(3), 419–458 (2014) Brasco, L., Parini, E.: The second eigenvalue of the fractional \(p\)-Laplacian. Adv. Calc. Var. 9(4), 323–355 (2016) Cabré, X., Figalli, A., Ros-Oton, X., Serra, J.: Stable solutions to semilinear elliptic equations are smooth up to dimension 9. Acta Math. 224(2), 187–252 (2020) Cheng, Z.Q., Song, R.: Hardy inequality for censored stable processes. Tohoku Math. J. (2) 55(3), 439–450 (2003) Deny, J., Lions, J.L.: Les éspaces du type de Beppo Levi. Ann. Inst. Fourier (Grenoble) 5, 305–370 (1954) Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016) Dyda, B.: A fractional order Hardy inequality. Ill. J. Math. 48(2), 575–588 (2004) Dyda, B., Vähäkangas, A.V.: A framework for fractional Hardy inequalities. Ann. Acad. Sci. Fenn. Math. 39, 675–689 (2014) Dyda, B., Vähäkangas, A.V.: Characterizations for fractional Hardy inequality. Adv. Calc. Var. 8(2), 173–182 (2015) Franzina, G.: Non-local torsion functions and embeddings. Appl. Anal. 98(10), 1811–1826 (2019) Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985) Hörmander, L., Lions, J.L.: Sur la complétion par rapport é une intégrale de Dirichlet. Math. Scand. 4(2), 259–270 (1956) Molica Bisci, G., Rădulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications 162, Cambridge University Press, Cambridge (2016) Palatucci, G., Savin, O., Valdinoci, E.: Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. 192(4), 673–718 (2013) Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60(1), 3–26 (2016) Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014) Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013) Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133–154 (2014) Sk, F.: Characterization of fractional Sobolev–Poincaré and (localized) Hardy inequalities (2022, Preprint) Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 34. Springer, Berlin (2008) van der Berg, M., Bucur, D.: On the torsion function with Robin or Dirichlet boundary conditions. J. Funct. Anal. 266(3), 1647–1666 (2014) Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. S 7(4), 857–885 (2014)