A nilpotent group and its elliptic curve: Non-uniformity of local zeta functions of groups
Tóm tắt
A nilpotent group is defined whose local zeta functions counting subgroups and normal subgroups depend on counting points modp on the elliptic curvey
2=x
3−x. This example answers negatively a question raised in the paper of F. J. Grunewald, D. Segal and G. C. Smith where these local zeta functions were first defined. They speculated that local zeta functions of nilpotent groups might be finitely uniform asp varies. A proof is given that counting points on the elliptic curvey
2=x
3−x are not finitely uniform, and hence the same is true for the zeta function of the associated nilpotent group. This example demonstrates that nilpotent groups have a rich arithmetic beyond the connection with quadratic forms.
Tài liệu tham khảo
M. P. F. du Sautoy,Zeta functions and counting finite p-groups, Electronic Research Announcements of the American Mathematical Society5 (1999), 112–122.
M. P. F. du Sautoy,Counting finite p-groups and nilpotent groups, preprint, to appear in Publications Mathématiques de l’IHES.
M. P. F. du Sautoy,Counting subgroups in nilpotent groups and points on elliptic curves, M.P.I. preprint series 2000 (86)
M. P. F. du Sautoy and F. J. Grunewald,Analytic properties of Euler products of Igusa-type zeta functions and subgroup growth of nilpotent groups, Comptes Rendus de l’Académie des Sciences, Paris, Série I329 (1999), 351–356.
M. P. F. du Sautoy and F. J. Grunewald,Analytic properties of zeta functions and subgroup growth, M.P.I. preprint series 1999 (87); to appear in the Annals of Mathematics.
M. P. F. du Sautoy and F. J. Grunewald,Uniformity for 2-generator free nilpotent groups, in preparation.
M. P. F. du Sautoy and F. Loeser,Motivic zeta functions of infinite dimensional Lie algebras, École Polytechnique preprint series 2000-12.
F. J. Grunewald, D. Segal and G. C. Smith,Subgroups of finite index in nilpotent groups, Inventiones Mathematicae93 (1988), 185–223.
E. Hecke,Eine neue Art von Zetafunktionen und ihre Beziehung zur Verteilung der Primzahlen. Zweite Mitteilung, Mathematische Zeitschrift6 (1920), 11–51.
G. Higman,Enumerating p-groups, II, Proceedings of the London Mathematical Society10 (1960), 566–582.
K. Ireland and M. Rosen,A Classical Introduction to Modern Number Theory, 2nd edition, Graduate Texts in Mathematics 84, Springer-Verlag, New York-Berlin-Heidelberg, 1993.