A newly identified β-amyrin synthase gene hypothetically involved in oleanane-saponin biosynthesis from Talinum paniculatum (Jacq.) Gaertn.
Tài liệu tham khảo
Thanamool, 2013, Talinum paniculatum (Jacq.) Gertn.: a medicinal plant with potential estrogenic activity in ovariectomized rats, Int. J. Pharm. Pharmaceut. Sci., 5, 478
Tolouei, 2021, Effects of Talinum paniculatum (Jacq.) Gaertn. leaf extract on general toxicity and pubertal development of rats, Hum. Exp. Toxicol., 40, 124, 10.1177/0960327120945756
Souto, 2021, Cardioprotective effects of Talinum paniculatum (Jacq.) Gaertn. in doxorubicin-induced cardiotoxicity in hypertensive rats, J. Ethnopharmacol., 281, 10.1016/j.jep.2021.114568
Menezes, 2021, Talinum paniculatum (Jacq.) Gaertn. leaves - source of nutrients, antioxidant and antibacterial potentials, Acta Sci. Pol. Technol. Aliment., 20, 253
Dos Reis, 2015, Chemical characterization and evaluation of antibacterial, antifungal, antimycobacterial, and cytotoxic activities of Talinum paniculatum, Rev. Inst. Med. Trop. Sao Paulo, 57, 397, 10.1590/S0036-46652015000500005
Ramos, 2010, Antinociceptive and edematogenic activity and chemical constituents of Talinum paniculatum Willd, J. Chem. Pharmaceut. Res., 2, 265
Manuhara, 2015, Optimization of culture conditions of Talinum paniculatum Gaertn. adventitious roots in balloon type bubble bioreactor using aeration rate and initial inoculum density, Asian J. Bio. Sci., 8, 83, 10.3923/ajbs.2015.83.92
Faizal, 2019, Enhancement of saponin accumulation in adventitious root culture of Javanese ginseng (Talinum paniculatum Gaertn.) through methyl jasmonate and salicylic acid elicitation, Afr. J. Biotechnol., 18, 130, 10.5897/AJB2018.16736
Erin, 2022, Effect of carbon source variations on growth, physiological stress, and saponin levels of Talinum paniculatum, J. Trop. Biodivers. Biotechnol., 7, 10.22146/jtbb.69359
Yang, 2010, Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components, J. Ethnopharmacol., 130, 231, 10.1016/j.jep.2010.04.039
Feng, 2016, Anti-stress effects of ginseng total saponins on hindlimb-unloaded rats assessed by a metabolomics study, J. Ethnopharmacol., 188, 39, 10.1016/j.jep.2016.04.028
Zhou, 2019, Anti-inflammatory effect of total saponin fraction from Dioscorea nipponica Makino on gouty arthritis and its influence on NALP3 inflammasome, Chin. J. Integr. Med., 25, 663, 10.1007/s11655-016-2741-5
Vieira Júnior, 2015, New steroidal saponin and antiulcer activity from Solanum paniculatum L, Food Chem., 186, 160, 10.1016/j.foodchem.2014.08.005
Mohamed, 2021, Antitumor activity of saponin isolated from the sea cucumber, Holothuria arenicola against ehrlich ascites carcinoma cells in swiss albino mice, Nat. Prod. Res., 35, 1928, 10.1080/14786419.2019.1644633
Nafiu, 2022, Antimalarial activity and biochemical effects of saponin-rich extract of Dianthus basuticus Burtt Davy in Plasmodium berghei-infected mice, Adv. Tradit. Med., 22, 519, 10.1007/s13596-021-00571-w
Hu, 2012, Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity, Int. J. Food Sci. Technol., 47, 1676, 10.1111/j.1365-2621.2012.03020.x
Lee, 2004, Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene, Plant Cell Physiol., 45, 976, 10.1093/pcp/pch126
Peng, 2020, Anti-cancer activity of Conyza blinii saponin against cervical carcinoma through MAPK/TGF-β/Nrf2 signaling pathways, J. Ethnopharmacol., 251, 10.1016/j.jep.2019.112503
de Costa, 2014, Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-a saponins are equally effective in inducing specific immune responses, PLoS One, 9, 10.1371/journal.pone.0105374
Parveen, 2020, A new oleanane type saponin from the aerial parts of Nigella sativa with anti-oxidant and anti-diabetic potential, Molecules, 25, 2171, 10.3390/molecules25092171
Fuentes, 2021, Replacing the rhamnose-xylose moiety of QS-21 with simpler terminal disaccharide units attenuates adjuvant activity in truncated saponin variants, Chemistry, 27, 4731, 10.1002/chem.202004705
Kayukawa, 2020, Quillaja bark saponin effects on Kluyveromyces lactis β-galactosidase activity and structure, Food Chem., 303, 10.1016/j.foodchem.2019.125388
Krivoruchko, 2015, Production of natural products through metabolic engineering of Saccharomyces cerevisiae, Curr. Opin. Biotechnol., 35, 7, 10.1016/j.copbio.2014.12.004
Han, 2010, Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng, Phytochemistry, 71, 36, 10.1016/j.phytochem.2009.09.031
Kushiro, 1998, β-Amyrin synthase - cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants, Eur. J. Biochem., 256, 238, 10.1046/j.1432-1327.1998.2560238.x
Shu, 2021, Identification and quantification of oleanane triterpenoid saponins and potential analgesic and anti-inflammatory activities from the roots and rhizomes of Panax stipuleanatus, J. Ginseng Res., 45, 305, 10.1016/j.jgr.2020.05.002
Wu, 2020, Oleanane- and ursane-type triterpene saponins from Centella asiatica exhibit neuroprotective Effects, J. Agric. Food Chem., 68, 6977, 10.1021/acs.jafc.0c01476
Park, 2020, β-Amyrin ameliorates alzheimer's disease-like aberrant synaptic plasticity in the mouse hippocampus, Biomol. Ther. (Seoul), 28, 74, 10.4062/biomolther.2019.024
Kwun, 2021, β-amyrin-induced apoptosis in Candida albicans triggered by calcium, Fungal Biol, 125, 630, 10.1016/j.funbio.2021.03.006
Yalçın, 2021, In silico detection of inhibitor potential of Passiflora compounds against SARS-Cov-2(Covid-19) main protease by using molecular docking and dynamic analyses, J. Mol. Struct., 1240, 10.1016/j.molstruc.2021.130556
Haralampidis, 2002, Biosynthesis of triterpenoid saponin in plants, Adv. Biochem. Eng. Biot., 75, 31
Confalonieri, 2009, Enhanced triterpene saponin biosynthesis and root nodulation in transgenic barrel medic (Medicago truncatula Gaertn.) expressing a novel β-amyrin synthase (AsOXA1) gene, Plant Biotechnol. J., 7, 172, 10.1111/j.1467-7652.2008.00385.x
Takemura, 2017, Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli, Appl. Microbiol. Biotechnol., 101, 6615, 10.1007/s00253-017-8409-z
Li, 2020, Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production, Chem. Eng. Sci., 218, 10.1016/j.ces.2020.115529
Huang, 2015, Production of dammarane-type sapogenins in rice by expressing the dammarenediol-II synthase gene from Panax ginseng C, A. Mey, Plant Sci., 239, 106, 10.1016/j.plantsci.2015.07.021
Kohda, 1992, Saponins from Talinum triangulare, Chem. Pharm. Bull., 40, 2557, 10.1248/cpb.40.2557
Vincken, 2007, Saponins, classification and occurrence in the plant kingdom, Phytochemistry, 68, 275, 10.1016/j.phytochem.2006.10.008
Iturbe-Ormaetxe, 2003, Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus, Plant Mol. Biol., 51, 731, 10.1023/A:1022519709298
Kim, 2005, Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centella asiatica (L.) Urban, Plant Cell Rep., 24, 304, 10.1007/s00299-005-0927-y
Chung, 2007, Molecular characterization of the GmAMS1 gene encoding β-amyrin synthase in soybean plants, Russ. J. Plant Physiol., 54, 518, 10.1134/S1021443707040139
Cammareri, 2008, Molecular characterization of β-amyrin synthase from Aster sedifolius L. and triterpenoid saponin analysis, Plant Sci., 175, 255, 10.1016/j.plantsci.2008.04.004
Liu, 2009, Cloning and functional analysis of a β-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea MAXIM, Biol. Pharm. Bull., 32, 818, 10.1248/bpb.32.818
Moses, 2015, Unraveling the triterpenoid saponin biosynthesis of the African shrub Maesa lanceolata, Mol. Plant, 8, 122, 10.1016/j.molp.2014.11.004
Li, 2020, Cloning and functional characterization of the β-amyrin synthase gene from Bupleurum chinense, Biol. Plant. (Prague), 64, 314, 10.32615/bp.2020.008
Yin, 2020, Expression characteristics and function of CAS and a new beta-amyrin synthase in triterpenoid synthesis in birch (Betula platyphylla Suk.), Plant Sci., 294, 10.1016/j.plantsci.2020.110433
Murashige, 1962, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plantarum, 15, 473, 10.1111/j.1399-3054.1962.tb08052.x
Chang, 2013, An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs, BMC Bioinf., 14, S4, 10.1186/1471-2105-14-S2-S4
Kumar, 2016, A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don, Sci. Rep., 6, 10.1038/srep33280
Fiallos-Jurado, 2016, Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves, Plant Sci., 250, 188, 10.1016/j.plantsci.2016.05.015
Afifah, 2018, Isolation and characterization of gene encoding β-amyrin synthase involved in saponin biosynthesis in Talinum paniculatum (Jacq.) Gaertn, Master’s Thesis. Institut Teknologi Bandung
Hoshino, 2017, β-Amyrin biosynthesis: catalytic mechanism and substrate recognition, Org. Biomol. Chem., 15, 2869, 10.1039/C7OB00238F
Kumar, 2022
Liu, 2017, New technologies accelerate the exploration of non-coding RNAs in horticultural plants, Hortic. Res., 4, 10.1038/hortres.2017.31
Ng, 2011, cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids, Plant Cell, 23, 1729, 10.1105/tpc.111.083915
Saiyed, 2022, Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases, Futur. J. Pharm. Sci., 8, 24, 10.1186/s43094-022-00413-9
Hayashi, 2001, Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice, Biol. Pharm. Bull., 24, 912, 10.1248/bpb.24.912
Faizal, 2013, Saponins and their role in biological processes in plants, Phytochemistry Rev., 12, 877, 10.1007/s11101-013-9322-4
Szakiel, 2011, Influence of environmental abiotic factors on the content of saponins in plants, Phytochemistry Rev., 10, 471, 10.1007/s11101-010-9177-x
Li, 2020, The effect of developmental and environmental factors on secondary metabolites in medicinal plants, Plant Physiol. Biochem., 148, 80, 10.1016/j.plaphy.2020.01.006
Gao, 2020, Transcriptome analysis of Paris polyphylla var. yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves, Phytochemistry, 178, 10.1016/j.phytochem.2020.112460
Wang, 2015, Saponin accumulation in flower buds of Panax notoginseng, Chin. Herb. Med., 7, 179
Bourgaud, 2001, Production of plant secondary metabolites: a historical perspective, Plant Sci., 161, 839, 10.1016/S0168-9452(01)00490-3
Okršlar, 2007, J. Žel, saponins in tissue culture of Primula veris L, in vitro cell, Dev. Biol.-Plant, 43, 644, 10.1007/s11627-007-9072-3
Rahimi, 2015, Production of ginseng saponins: elicitation strategy and signal transductions, Appl. Microbiol. Biotechnol., 99, 6987, 10.1007/s00253-015-6806-8
Lu, 2016, Plant metabolic engineering strategies for the production of pharmaceutical terpenoids, Front. Plant Sci., 7, 1647, 10.3389/fpls.2016.01647