A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals

Journal of Environmental Radioactivity - Tập 153 - Trang 141-148 - 2016
Justin Brown1, B. Alfonso2, R. Avila2, N.A. Beresford3, D. Copplestone4, A. Hosseini1
1Norwegian Radiation Protection Authority, Department of Emergency Preparedness and Environmental Radioactivity, Grini næringspark 13 Postbox 55, NO-1332, Østerås, Norway
2Facilia AB Gustavslundsvägen 151C, 167 51 Bromma, Sweden
3NERC Centre for Ecology & Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA14AP, UK
4School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amato, 2014, On the definition of the ICRP reference ‘Brown Seaweed’ implemented in the ERICA software, J. Radiol. Prot., 34, 270

Andersson, 2009, Protection of the environment from ionising radiation in a regulatory context (PROTECT): proposed numerical benchmark values, J. Environ. Radioact., 100, 1100, 10.1016/j.jenvrad.2009.05.010

ANSTO, 2014

Avila, 2014, The selection of parameter values in studies of environmental radiological impacts (Letter), J. Radiol. Prot., 34, 260

Barnett, 2009, Radionuclide activity concentrations in two species of reptiles from the Chernobyl exclusion zone, Radioprotection, 44, 537, 10.1051/radiopro/20095099

Barnett, 2014, Transfer parameters for ICRP reference animals and plants collected from a forest ecosystem, Radiat. Environ. Biophys., 53, 125, 10.1007/s00411-013-0493-6

Beresford, 2008, An international comparison of models and approaches for the estimation of the radiological exposure of non-human biota, Appl. Radiat. Isot., 66, 1745, 10.1016/j.apradiso.2008.04.009

Beresford, 2008, Inter-comparison of models to estimate radionuclide activity concentrations in non-human biota, Radiat. Environ. Biophys., 47, 491, 10.1007/s00411-008-0186-8

Beresford, 2008, Derivation of transfer parameters for use within the ERICA tool and the default concentration ratios for terrestrial biota, J. Environ. Radioact., 99, 1393, 10.1016/j.jenvrad.2008.01.020

Beresford, 2010, Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone: an international comparison of approaches, J. Radiol. Prot., 30, 341, 10.1088/0952-4746/30/2/S07

Beresford, 2013, A new approach to predicting environmental transfer of radionuclides to wildlife taking account of inter-site variation using residual maximum likelihood mixed-model regression: a demonstration for freshwater fish and caesium, Sci. Total Environ., 463–4, 284, 10.1016/j.scitotenv.2013.06.013

Beresford, 2014, Recent development of wildlife transfer databases

Brown, 2008, The ERICA tool, J. Environ. Radioact., 99, 1371, 10.1016/j.jenvrad.2008.01.008

Brown, 2013, Approaches to providing missing transfer parameter values in the ERICA tool–how well do they work?, J. Environ. Radioact., 126, 399, 10.1016/j.jenvrad.2012.05.005

Carolan, 2011, Dose assessment for marine biota and humans from discharge of 131I to the marine environment and uptake by algae in Sydney, Australia, J. Environ. Radioact., 102, 953, 10.1016/j.jenvrad.2009.10.002

Copplestone, 2010, .Considerations for the integration of human and wildlife radiological assessments, J. Radiol. Prot., 30, 283, 10.1088/0952-4746/30/2/S05

Copplestone, 2013, An international database of radionuclide concentration ratios for wildlife: development and uses, J. Environ. Radioact., 126, 288, 10.1016/j.jenvrad.2013.05.007

Doering, 2016, A soil radiological quality guideline value for wildlife-based protection in uranium mine rehabilitation, J. Environ. Radioact, 151, 522, 10.1016/j.jenvrad.2015.08.020

Environmental Resources of Australia Ltd (ERA), 2014

European Food Safety Authority, 2013, International framework dealing with human risk assessment of combined exposure to multiple chemicals, EFSA J., 11, 69, 10.2903/j.efsa.2013.3313

Fuma, 2015, Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima, J. Environ. Radioact., 143, 123, 10.1016/j.jenvrad.2015.02.020

Garnier-Laplace, 2011, Fukushima wildlife dose reconstruction signals ecological consequences, Environ. Sci. Technol., 45, 5077, 10.1021/es201637c

Hirth, 2014, Whole-organism concentration ratios in wildlife inhabiting Australian uranium mining environments

Hosseini, 2008, Transfer of radionuclides in aquatic ecosystems – default concentration ratios for aquatic biota in the Erica Tool, J. Environ. Radioact., 99, 1408, 10.1016/j.jenvrad.2008.01.012

Hosseini, 2011, Application of an environmental impact assessment methodology to a site discharging low levels of radioactivity to a freshwater environment in Norway, Environ. Monit. Assess., 173, 653, 10.1007/s10661-010-1413-8

Hosseini, 2013, Application of the Bayesian approach for derivation of PDFs for concentration ratio values, J. Environ. Radioact., 126, 376, 10.1016/j.jenvrad.2013.04.007

Howard, 2013, The IAEA handbook on radionuclide transfer to wildlife, J. Environ. Radioact., 121, 55, 10.1016/j.jenvrad.2012.01.027

IAEA, 1992

IAEA, 2004, 103

IAEA, 2010

IAEA, 2014

ICRP, 2007, vol. 103, 2

ICRP, 2008, vol. 108, 4

ICRP, 2009, vol. 114

Jaeschke, 2013

Johansen, 2012, Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches, Sci. Total Environ., 427–428, 238, 10.1016/j.scitotenv.2012.04.031

Larsson, 2008, An overview of the ERICA integrated approach to the assessment and management of environmental risks from ionising contaminants, J. Environ. Radioact., 99, 1364, 10.1016/j.jenvrad.2007.11.019

Li, 2015, Pre-assessment of dose rates of 134Cs, 137Cs, and 60Co for marine biota from discharge of Haiyang nuclear power plant, China, J. Environ. Radioact., 147, 8, 10.1016/j.jenvrad.2015.05.001

Nedveckaite, 2011, Background and anthropogenic radionuclide derived dose rates to freshwater ecosystem - nuclear power plant cooling pond - reference organisms, J. Environ. Radioact., 102, 788, 10.1016/j.jenvrad.2011.04.012

Nedveckaite, 2013, Impact assessment of ionizing radiation on human and non-human biota from the vicinity of a near-surface radioactive waste repository, Radiat. Environ. Biophys., 52, 221, 10.1007/s00411-013-0459-8

Posiva, 2014

Robinson, 2010, Impacts on non-human biota from a generic geological disposal facility for radioactive waste: some key assessment issues, J. Radiol. Prot., 30, 161, 10.1088/0952-4746/30/2/005

Sheppard, 2005, Transfer parameters—are on-site data really better?, Hum. Ecol. Risk Assess., 11, 939, 10.1080/10807030500257747

Sheppard, 2010, Verification of radionuclide transfer factors to domestic-animal food products, using indigenous elements and with emphasis on iodine, J. Environ. Radioact., 101, 895, 10.1016/j.jenvrad.2010.06.002

Smith, 2008

Stark, 2015, Predicting exposure of wildlife in radionuclide contaminated wetland ecosystems, Environ. Pollut., 196, 201, 10.1016/j.envpol.2014.10.012

Strand, 2014, Assessment of Fukushima-derived radiation doses and effects on wildlife in Japan, Environ. Sci. Technol. Lett., 1, 198, 10.1021/ez500019j

Thorne, 2013, The selection of parameter values in studies of environmental radiological impacts, J. Radiol. Prot., 33, N1, 10.1088/0952-4746/33/2/N1

Torudd, 2010

Ulanovsky, 2012, Dosimetry for reference animals and Plants: current state and prospects, Proc. First ICRP Symposium Int. Syst. Radiological Prot. Ann. ICRP, 41, 218

UNSCEAR, 1996, vol. 96, 86

UNSCEAR, 2014, 311

USDoE, 2002

Vandenhove, 2013, Predicting the environmental risks of radioactive discharges from Belgian nuclear power plants, J. Environ. Radioact., 126, 61, 10.1016/j.jenvrad.2013.07.004

Vives i Batlle, 2007, Inter-comparison of absorbed dose rates for non-human biota, Radiat. Environ. Biophys., 46, 349, 10.1007/s00411-007-0124-1

Vives i Batlle, 2011, The estimation of absorbed dose rates for non-human biota: an extended intercomparison, Radiat. Environ. Biophys., 50, 231, 10.1007/s00411-010-0346-5

Vives i Batlle, 2012, Allometric methodology for the assessment of radon exposures to wildlife, Sci. Total Environ., 427–428, 50, 10.1016/j.scitotenv.2012.03.088

Vives i Batlle, 2014, The impact of the Fukushima nuclear accident on marine biota: retrospective assessment of the first year and perspectives, Sci. Total Environ., 487, 143, 10.1016/j.scitotenv.2014.03.137

Wood, 2010, Radionuclide transfer to reptiles, Radiat. Environ. Biophys., 49, 509, 10.1007/s00411-010-0321-1

Wood, 2013, Evaluating summarised radionuclide concentration ratio datasets for wildlife, J. Environ. Radioact., 126, 314, 10.1016/j.jenvrad.2013.07.022

Wood, 2014, Is the use of wildlife group-specific concentration ratios justified?

Yankovich, 2010, An international model validation exercise on radionuclide transfer and doses to freshwater biota, J. Radiol. Prot., 30, 299, 10.1088/0952-4746/30/2/S06

Yankovich, 2013, Establishing a database of radionuclide transfer parameters for freshwater wildlife, J. Environ. Radioact., 126, 299, 10.1016/j.jenvrad.2012.07.014