A new uncertainty importance measure

Reliability Engineering & System Safety - Tập 92 Số 6 - Trang 771-784 - 2007
Emanuele Borgonovo1
1Institute for Quantitative Methods, Bocconi University, 20135 Milano, Viale Isonzo 25, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Apostolakis, 2005, How useful is quantitative risk assessment, Risk Anal, 24, 515, 10.1111/j.0272-4332.2004.00455.x

Hammit, 1999, The expected value of information and the probability of surprise, Risk Anal, 19, 135, 10.1111/j.1539-6924.1999.tb00395.x

Apostolakis, 1995, A commentary on model uncertainty

Saltelli, 2002, Sensitivity analysis for importance assessment, Risk Anal, 22, 579, 10.1111/0272-4332.00040

Saltelli, 2000, Sensitivity analysis as an ingredient of modelling, Stat Sci, 19, 377

Sobol IM. Sensitivity estimates for nonlinear mathematical models. Mat Model 1990;2(1):112–8 [in Russian]

Sobol IM. Sensitivity estimates for nonlinear mathematical models. MMCE 1993;1(4):407–14 [English translation].

Sobol’, 2001, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math Comput Simulation, 55, 271, 10.1016/S0378-4754(00)00270-6

Sobol’, 2003, Theorem and examples on high-dimensional model representation, Reliab Eng Syst Saf, 79, 187, 10.1016/S0951-8320(02)00229-6

Rabitz, 1998, Efficient input output model representation, Comput Phys Commun, 117, 11, 10.1016/S0010-4655(98)00152-0

Rabitz, 1999, General foundations of high-dimensional model representations, J Math Chem, 25, 197, 10.1023/A:1019188517934

Alis, 2001, Efficient computation of high dimensional model representations, J Math Chem, 29, 127, 10.1023/A:1010979129659

Bedford, 1998, Sensitivity indices for (tree)-dependent variables, 17

Tarantola S. Quantifying uncertainty importance when inputs are correlated. In: Cottam MP, Harvey DW, Pape RP, Tait J, editors, Foresight and precaution. Rotterdam: Balkema; 2000 [ISBN 9058091406].

Ratto, 2001, Estimating importance indicators for correlated inputs, 157

Saltelli, 2002, On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal, J Am Stat Assoc, 97, 702, 10.1198/016214502388618447

Homma, 1995, Use of Sobol’ quasirandom sequence generator for integration of modified uncertainty importance measure, J Nucl Sci Technol, 32, 1164, 10.3327/jnst.32.1164

Iman, 2005, Uncertainty analysis for computer model projections of hurricane losses, Risk Anal, 25, 1299, 10.1111/j.1539-6924.2005.00674.x

Savage, 1972

Helton, 2003, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliab Eng Syst Saf, 81, 23, 10.1016/S0951-8320(03)00058-9

Chun, 2000, An uncertainty importance measure using a distance metric for the change in a cumulative distribution function, Reliab Eng Syst Saf, 70, 313, 10.1016/S0951-8320(00)00068-5

Nakashima K, Yamato K. Variance—importance of system components. IEEE Trans Reliab 1982;R-31(1).

Iman, 1990, A robust measure of uncertainty importance for use in fault tree system analysis, Risk Anal, 10, 401, 10.1111/j.1539-6924.1990.tb00523.x

Homma, 1996, Importance measures in global sensitivity analysis of nonlinear models, Reliab Eng Syst Saf, 52, 1, 10.1016/0951-8320(96)00002-6

Iman, 1987, A matrix-based approach to uncertainty and sensitivity analysis for fault trees, Risk Anal, 7, 21, 10.1111/j.1539-6924.1987.tb00966.x

Iman, 1987, A measure of top–down correlation, Technometrics, 29, 351, 10.2307/1269344

Helton, 1993, Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal, Reliab Eng Syst Saf, 42, 327, 10.1016/0951-8320(93)90097-I

McKay MD. Variance-based methods for assessing uncertainty importance. In: NUREG-1150 analyses, LA-UR-96-2695; 1996, p. 1–27.

Saltelli, 1997, The role of sensitivity analysis in the corroboration of models and its link to model structural and parametric uncertainty, Reliab Eng Syst Saf, 57, 1, 10.1016/S0951-8320(97)00022-7

Saltelli, 1990, Non-parametric statistics in sensitivity analysis for model output: a comparison of selected techniques, Reliab Eng Syst Saf, 28, 229, 10.1016/0951-8320(90)90065-U

Helton, 2000, Sampling-based methods, 101

Hora SC, Iman RL. A comparison of maximus/bounding and Bayes/Monte Carlo for fault tree uncertainty analysis. Technical Report SAND85-2839, Sandia National Laboratories, Albuquerque, New Mexico; 1986.

Saltelli, 1999, A quantitative model-independent method for global sensitivity analysis of model output, Technometrics, 41, 39, 10.2307/1270993

Park, 1994, A new approach for measuring uncertainty importance and distributional sensitivity in probabilistic safety assessment, Reliab Eng Syst Saf, 46, 253, 10.1016/0951-8320(94)90119-8

Bier, 1983, A measure of uncertainty importance for components in fault trees, Trans Am Nucl Soc, 45, 384

Borgonovo, 2001, A new importance measure for risk-informed decision-making, Reliab Eng Syst Saf, 72, 193, 10.1016/S0951-8320(00)00108-3

Cheok, 1998, Use of importance measures in risk-informed regulatory applications, Reliab Eng Syst Saf, 60, 213, 10.1016/S0951-8320(97)00144-0

Borgonovo, 2003, Comparison of local and global sensitivity analysis techniques in probabilistic safety assessment, Reliab Eng Syst Saf, 79, 175, 10.1016/S0951-8320(02)00228-4

Morris, 1991, Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161, 10.2307/1269043

Kleijnen, 2005, An overview of the design and analysis of simulation experiments for sensitivity analysis, Eur J Oper Res, 164, 287, 10.1016/j.ejor.2004.02.005

Frey, 2002, Identification and review of sensitivity analysis methods, Risk Anal, 22, 553, 10.1111/0272-4332.00039

Hora, 2003, A distribution-free test for the relationship between model input and output when using Latin hypercube sampling, Reliab Eng Syst Saf, 79, 333, 10.1016/S0951-8320(02)00240-5

Oakley, 2004, Probabilistic sensitivity analysis of complex models: a Bayesian approach, J R Stat Soc: Ser B (Stat Methodol), 66, 751, 10.1111/j.1467-9868.2004.05304.x

Huang, 1988, 365

Malliavin, 1995

Joint Research Center of the European Community. SIMLAB reference manual POLIS-JRC ISIS. Joint Research Center of the European Cummunity.

Campolongo, 1997, Sensitivity analysis of an environmental model: an application of different analysis methods, Reliab Eng Syst Saf, 57, 49, 10.1016/S0951-8320(97)00021-5

Patil, 2004, Comparison of sensitivity analysis methods based on application to a food safety risk assessment model, Risk Anal, 24, 573, 10.1111/j.0272-4332.2004.00460.x

Sobol, 1990, Quasi-Monte Carlo methods, Prog Nucl Energy, 24, 55, 10.1016/0149-1970(90)90022-W

McKay, 1979, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239, 10.2307/1268522