A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gałuszka, 2013, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, Trends Anal. Chem., 50, 78, 10.1016/j.trac.2013.04.010
Tobiszewski, 2016, Metrics for green analytical chemistry, Anal. Methods, 8, 2993, 10.1039/C6AY00478D
Parr, 2017, Life cycle management of analytical methods, J. Pharm. Biomed. Anal., 17, 31221
Life, 2006
McDowall, 2014, Life cycle and quality by design for chromatographic methods, LCGC Eur., 27, 91
Tobiszewski, 2015, Green chemistry metrics with special reference to green analytical chemistry, Molecules, 20, 10928, 10.3390/molecules200610928
EPA. Defining Hazardous Waste: Listed, Characteristic and Mixed Radiological Wastes, 〈https://www.epa.gov/hw/defining-hazardous-waste-listed-characteristic-and-mixed-radiological-wastes#PandU〉 (Accessed 12 July 2017).
De la Guardia, 2011
D. Raynie, J. Driver, Green assessment of chemical methods, in: Proceedings of the 13th Annual Green Chemistry and Engineering Conference, Maryland, 2009.
Gałuszka, 2012, Analytical Eco-Scale for assessing the greenness of analytical procedures, Trends Anal. Chem., 37, 61, 10.1016/j.trac.2012.03.013
Cinelli, 2014, Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment, Ecol. Indic., 46, 138, 10.1016/j.ecolind.2014.06.011
Behzadian, 2012, Review: a state-of the-art survey of TOPSIS applications, Exp. Syst. Appl., 39, 13051, 10.1016/j.eswa.2012.05.056
Tobiszewski, 2015, Multicriteria decision analysis in ranking of analytical procedures for aldrin determination in water, J. Chromatogr. A, 1387, 116, 10.1016/j.chroma.2015.02.009
Tobiszewski, 2009, Green analytical chemistry—theory and practice, Trends Anal. Chem., 28, 943, 10.1016/j.trac.2009.06.001
Chemat, 2015, Solvent-free extraction of food and natural products, Trends Anal. Chem., 71, 157, 10.1016/j.trac.2015.02.021
Mansour, 2017, Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool, Talanta, 170, 22, 10.1016/j.talanta.2017.03.084
Zaruba, 2017, Vortex-assisted liquid-liquid microextraction procedure for iodine speciation in water samples, Microchem. J., 132, 59, 10.1016/j.microc.2017.01.004
Mouahid, 2017, Supercritical CO2 extraction from endemic Corsican plants; comparison of oil composition and extraction yield with hydrodistillation method, J. CO2 Util., 20, 263, 10.1016/j.jcou.2017.06.003
Pena-Pereira, 2017
Płotka-Wasylka, 2016, Modern solutions in the field of microextraction using liquid as a medium of extraction, Trends Anal. Chem., 85, 46, 10.1016/j.trac.2016.08.010
Kricka, 2001, Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century, Clin. Chim. Acta, 307, 219, 10.1016/S0009-8981(01)00451-X
Pena-Abaurrea, 2011, 107
Płotka-Wasylka, 2016, An in situ derivatization – dispersive liquid–liquid microextraction combined with gas-chromatography – mass spectrometry for determining biogenic amines in home-made fermented alcoholic drinks, J. Chromatogr. A, 1453, 10, 10.1016/j.chroma.2016.05.052
Płotka–Wasylka, 2017, Determination of biogenic amines in wine using micellar electrokinetic chromatography, J. Res. Anal., 3, 62
Proestos, 2008, Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection, Food Chem., 106, 1218, 10.1016/j.foodchem.2007.06.048
EPA Methods, 〈http://www.caslab.com/EPA-Methods/PDF/8270c.pdf〉 (Accessed 12 July 2017).
EPA Methods, 〈https://www.o2si.com/docs/epa-method-550.1.pdf〉 (Accessed 12 July 2017).
NEMI Methods, 〈https://www.nemi.gov/methods/method_summary/5630/〉 (Accessed 12 July 2017.).