A new segmentation approach for iris recognition based on hand-held capture device
Tài liệu tham khảo
Daugman, 1993, High confidence visual recognition of persons by a test of statistical independence, IEEE Trans. Pattern Anal. Mach. Intell., 15, 1148, 10.1109/34.244676
Daugman, 2003, The importance of being random: statistical principles of iris recognition, Pattern Recognition, 36, 279, 10.1016/S0031-3203(02)00030-4
Daugman, 2004, How iris recognition works, IEEE Trans. Circuits Syst. Video Technol., 14, 21, 10.1109/TCSVT.2003.818350
Wildes, 1997, Iris recognition: an emerging biometric technology, Proc. IEEE, 85, 1348, 10.1109/5.628669
Kong, 2003, Detecting eyelash and reflection for accurate iris segmentation, Int. J. Pattern Recognition Artif. Intell., 17, 1025, 10.1142/S0218001403002733
Ma, 2004, Efficient iris recognition by characterizing key local variations, IEEE Trans. Image Process., 13, 739, 10.1109/TIP.2004.827237
Ma, 2003, Personal recognition based on iris texture analysis, IEEE Trans. Pattern Anal. Mach. Intell., 25, 1519, 10.1109/TPAMI.2003.1251145
J. Huang, Y. Wang, T. Tan, et al., A new iris segmentation method for recognition, in: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, 2004, pp. 554–557.
Fleck, 1992, Some defects in finite-difference edge finders, IEEE Trans. Pattern Anal. Mach. Intell., 14, 337, 10.1109/34.120328
Canny, 1986, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8, 679, 10.1109/TPAMI.1986.4767851
CASIA Iris Image Database 〈http://www.sinobiometrics.com〉.
Rosin, 2003, Evaluation of global image thresholding for change detection, Pattern Recognition Lett., 24, 2345, 10.1016/S0167-8655(03)00060-6
P. Kovesi, Image Features From Phase Congruency, Videre: A Journal of Computer Vision Research, vol. 1(3), MIT Press, Cambridge, MA, 1999.