Công nghệ niêm phong mới cho kính siêu mỏng với hợp kim nhôm bằng phương pháp hàn truyền laser

Zhang Min1,2, Chan Yufei2, Chen Changjun1,2, Qiu Zhaoling2
1Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huaian, China
2Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China

Tóm tắt

Một nghiên cứu thực nghiệm về hàn truyền laser giữa kính trong suốt và hợp kim nhôm bằng laser xung mili giây được báo cáo với mục đích niêm phong hermetically kính với kim loại. Trước khi tiến hành quá trình niêm phong bằng laser, một lớp phủ oxit đã được chuẩn bị trên bề mặt hợp kim nhôm bằng quy trình ôxi hóa vi cầu. Ảnh hưởng của các tham số xử lý laser đến lực cắt, hình thái mối hàn và giao diện mối hàn được khảo sát, và cơ chế hình thành của mối hàn được phân tích. Kết quả cho thấy lớp phủ ôxi hóa vi cầu có thể hoạt động hiệu quả như một lớp hấp thụ năng lượng laser và lớp đệm cho các mối hàn. Ngoài ra, lý do chính để thực hiện sự liên kết giữa hai vật liệu này nằm trong cấu trúc ghép hỗn hợp hình thành bên trong các mối hàn. Khi công suất laser là 100 W, độ rộng xung laser 2.5 ms, tốc độ hàn 3 mm/s và tần số laser 10 Hz, các mối hàn có thể đạt được khả năng niêm phong tốt.

Từ khóa

#hàn truyền laser #kính trong suốt #hợp kim nhôm #niêm phong hermetically #ôxi hóa vi cầu #mối hàn

Tài liệu tham khảo

Cocheteau N, Maurel-Pantel A, Lebon F, Mazerolle F, Rosu I, Ait-Zaid S, Larclause IS (2016) Influence of roughness on mechanical strength of direct bonded silica and Zerodur glasses. Int J Adhes Adhes 68:87–94 Szesz EM, Lepienski CM (2017) Anodic bonding of titanium alloy with bioactive glass. J Non-Cryst Solids 471:19–27 Kind H, Gehlen E, Aden M, Olowinsky A, Gillner A (2014) Laser glass frit sealing for encapsulation of vacuum insulation glasses. Phys Procedia 56:673–680 Buček A, Brablec A, Kováčik D, Sťahel P, Černák M (2017) Glass bond adhesive strength improvement by DCSBD atmospheric-pressure plasma treatment. Int J Adhes Adhes 78:1–3 Zhang H, Liu Y, Wang LG, Fan JJ, Fan XJ, Sun FL, Zhang GQ (2018) A new hermetic sealing method for ceramic package using nanosilver sintering technology. Microelectron Reliab 81:143–149 Rautiainen A, Xu HB, Österlund E, Li J, Vuorinen V, Paulasto-Kröckel M (2015) Microstructural characterization and mechanical performance of wafer-level SLID bonded Au-Sn and Cu-Sn seal rings for MEMS encapsulation. J Electron Mater 44:4533–4548 Liu SX, Yang Z, Zhang JF, Zhang SW, Miao H, Zhang YJ, Zhang Q (2018) Microstructure characteristics of vacuum glazing brazing joints using laser sealing technique. Opt Laser Technol 101:189–194 Richter S, Zimmermann F, Tünnermann A, Nolte S (2016) Laser welding of glasses at high repetition rates — Fundamentals and prospects. Opt Laser Technol 83:59–66 Döhler F, Zscheckel T, Kasch S, Schmidt T, Rüssel C (2017) A glass in the CaO/MgO/Al2O3/SiO2 system for the rapid laser sealing of alumina. Ceram Int 43:4302–4308 Pablos-Martin A d, Th H (2017) Laser welding of glasses using a nanosecond pulsed Nd:YAG laser. Opt Lasers Eng 90:1–9 Richter S, Zimmermann F, Tünnermann A, Nolte S (2016) Laser welding of glasses at high repetition rates—fundamentals and prospects. Opt Laser Technol 83:59–66 Malfait WJ, Robert K, Lang B, Rist T, Klučka M, Zajacz Z, Koebel MM (2016) Optimized solder alloy for glass-to-metal joints by simultaneous soldering and anodic bonding. J Mater Process Technol 236:176–182 Wang X, Li P, Xu ZK, Hu X, Xi SH (2010) Laser transmission joint between PET and titanium for biomedical application. J Mater Process Technol 210:1767–1771 Quintino L, Liu L, Silva RM, Silva RJC, Hu A (2013) Bonding NiTi to glass with femtosecond laser pulses. Mater Lett 98:142–145 Liu X, Chen CJ, Wang XN, Zhang M (2014) The research of glass and metal sealing. Welding Technology 43:1–6 Zou T, Chen CJ, Zhang M, Xing L (2016) Study on laser welding mechanisms of glass/stainless-steel and glass/titanium-alloy materials. Chinese J Lasers 43:0902002 Qiu ZL, Chen CJ, Zhang M, Chen WG, Zhang W (2017) Performance and mechanism of laser welding of micro-arc-oxidation aluminum alloy and high-alumina ultrathin glass. Chinese J Lasers 44:1202008 Li CY, Zhang M, Chen CJ, Wang XN, Chen WG (2016) Effect of laser weld spacing and multipass welding on performance of glass sealing with aluminum alloy and underlying mechanism. Chinese J Lasers 43(7):0702005 Faidel D, Behr W, Groß S, Reisgen U (2010) Glass sealing materials and laser joining process development for fuel cell stack manufacturing. Mater Werkst 41:914–924 Faidel D, Behr W, Reisgen U (2012) Laser-based glass sealant repair application for untight solid oxide fuel cell stacks. J Univ Chem Tech Metall 47:421–428 Börner FD, Lippmann W, Hurtado A, Schön B (2014) Glasses for laser joining of zirconia ceramics. J Eur Ceram Soc 34:765–772 Comesañ R, Val J d, Durán A, Justo VM, Serben FC, Pascuala MJ (2015) Laser cladding of glass-ceramic sealants for SOFC. J Eur Ceram Soc 35:4475–4484 Zhao ZQ, Pan QL, Yan JK, Ye J, Liu YR (2018) Direct current micro-arc oxidation coatings on Al-Zn-Mg-Mn-Zr extruded alloy with tunable structures and properties templated by discharge stages. Vacuum. 150:155–165 Li WP, Qian ZY, Liu XH, Zhu LQ, Liu HC (2015) Investigation of micro-arc oxidation coating growth patterns of aluminum alloy by two-step oxidation method. Appl Surf Sci 356:581–586 Pinkerton AJ, Li L (2004) Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances. J Phy D: Appl Phys 37:1885–1895 Schneider M, Dal M, Koutiri FC, Fabbro R (2018) Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J Mater Process Technol 251:376–386 ASTM (2014) E831-14 standard test method for linear thermal expansion of solid materials by thermomechanical analysis. E 831-01 ASTM (2017) F734-17 Standard test method for shear strength of fusion bonded polycarbonate aerospace glazing material. https://doi.org/10.1520/F0734-95R11.2 Knig J, Nolte S, Tünnermann A (2005) Plasma evolution during metal ablation with ultrashort laser pulses. Opt Express 13:10597–10607 Chen J, Carter RM, Thomson RR, Hand DP (2015) Avoiding the requirement for preexisting optical contact during picosecond laser glass-to-glass welding. Opt Express 23:18645–18657 Ostrikov K, Neyts EC, Meyyap M (2013) Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Adv Phys 62:113–224 Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196–198 Hoge CE, Brennan JJ, Pask JA (1973) Interfacial reactions and wetting behavior of glass-iron systems. J Am Ceram Soc 56(2):51–54 Zanchetta A, Lefort P, Gabbay E (1995) Thermal expansion and adhesion of ceramic to metal sealings: case of porcelain-Kovar junctions. J Eur Ceram Soc 15(3):233–238 A.Temmler, C.B.Weingarten, B.Schober, E.Uluz (2021) Investigation on laser beam figuring of fused silica using microsecond pulsed CO2 laser radiation, Appl. Surf. Sci In press Ciuca OP, Carter RM, Prangnell PB, Duncan PH (2016) Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds. Mater Charact 120:53–62 Martin ADP, Lorenz M, Grundmann M, Höche TH (2017) Laser welding of fused silica glass with sapphire using a nonstoichiometric, fresnoitic Ba2TiSi2O8·3SiO2 thin film as an absorber. Opt Laser Technol 92:85–94 Miotello A, Kelly R (1999) Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl Phys A Mater Sci Process 69:S67–S73