Một khái niệm lò phản ứng mới cho việc sản xuất đồng thời amoniac và methyl ethyl ketone

Journal of Flow Chemistry - Tập 9 - Trang 43-57 - 2019
Roozbeh Ghani1, Davood Iranshahi1
1Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Tóm tắt

Trong nghiên cứu này, sản xuất đồng thời amoniac và methyl ethyl ketone (MEK) trong một lò phản ứng nhiệt liên kết nhiều ống được trình bày. Dựa trên cấu hình mới này, nhiệt phát ra từ phản ứng tổng hợp amoniac, một phản ứng cực kỳ tỏa nhiệt trong ống bên trong, được sử dụng để cung cấp nhiệt cần thiết cho phản ứng khử hydro 2-butanol trong ống bên ngoài. MEK và hydro được sản xuất từ phản ứng khử hydro 2-butanol và lượng hydro được tạo ra được sử dụng để cung cấp 30,72% lượng hydro cần thiết cho quá trình tổng hợp amoniac. Hơn nữa, bất chấp các nhà máy tổng hợp amoniac và khử hydro 2-butanol truyền thống, các bộ làm mát giữa giai đoạn và lò nung không cần thiết cho cấu hình được đề xuất. Do đó, chi phí vận hành, tiêu thụ năng lượng và phát thải từ lò như CO, CO2 và NOx sẽ giảm đáng kể. Cũng cần nhấn mạnh rằng tối ưu hóa đa mục tiêu được sử dụng để cải thiện hiệu suất của lò phản ứng với sự trợ giúp của việc tối đa hóa tổng sản lượng và năng suất cho mỗi bên của lò phản ứng. Bên cạnh đó, tác động của sự biến đổi các tham số chính của quá trình lên hiệu suất của lò phản ứng đã được nghiên cứu.

Từ khóa


Tài liệu tham khảo

Ammonia AM (2006) Ullmann's encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Carvalho EP, Borges C, Andrade D, Yuan JY, Ravagnani MA (2014) Modeling and optimization of an ammonia reactor using a penalty-like method. Appl Math Comput 237:330–339 Peng P, Cheng Y, Hatzenbeller R, Addy M, Zhou N, Schiappacasse C et al (2017) Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia. Int J Hydrog Energy 42(30):19056–19066 Shimoda N, Kimura Y, Kobayashi Y, Kubota J, Satokawa S (2017) Ammonia synthesis over yttrium-doped barium zirconate and cerate-based perovskite-type oxide supported ruthenium catalysts. Int J Hydrog Energy 42(50):29745–29755 Nikačević N, Jovanović M, Petkovska M (2011) Enhanced ammonia synthesis in multifunctional reactor with in situ adsorption. Chem Eng Res Des 89(4):398–404 Humphreys J, Lan R, Du D, Xu W, Tao S (2018) Promotion effect of proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Int J Hydrog Energy 43(37):17726–17736 Aziz M, Putranto A, Biddinika MK, Wijayanta AT (2017) Energy-saving combination of N2 production, NH3 synthesis, and power generation. Int J Hydrog Energy 42(44):27174–27183 Azarhoosh MJ, Farivar F, Ale EH (2014) Simulation and optimization of a horizontal ammonia synthesis reactor using genetic algorithm. RSC Adv 4(26):13419–13429 Kolios G, Frauhammer J, Eigenberger G (2000) Autothermal fixed-bed reactor concepts. Chem Eng Sci 55(24):5945–5967 Babu BV, Angira R (2005) Optimal design of an auto-thermal ammonia synthesis reactor. Comput Chem Eng 29(5):1041–1045 Neier W, Strehlke G (2002) 2-Butanone. Ullmann's encyclopedia of industrial chemistry. 6 ed: Wiley Bai G, Wang Y, Li F, Zhao Z, Chen G, Li N et al (2013) Influence of acid–base properties of the support on copper-based catalysts for catalytic dehydrogenation of 2-butanol. Catal Lett 143(1):101–107 Fang D, Ren W, Liu Z, Xu X, Xu L, Lü H et al (2009) Synthesis and applications of mesoporous cu-Zn-Al2O3 catalyst for dehydrogenation of 2-butanol. J Nat Gas Chem 18(2):179–182 Yang J, Zeng T, Cai D, Li L, Tang W, Hong R et al (2016) Supported ionic liquids as green catalyst for 2-butanol synthesis from transesterification of sec-butyl acetate. Asia Pac J Chem Eng 11(6):901–909 Liu Z, Huo W, Ma H, Qiao K (2006) Development and commercial application of methyl-ethyl-ketone production technology. Chin J Chem Eng 14(5):676–684 Keuler JN, Lorenzen L (2002) The dehydrogenation of 2-butanol in a Pd–ag membrane reactor. J Membr Sci 202(1–2):17–26 Ravi S, Raghunathan T (1988) Dehydrogenation of butan-2-ol on zinc oxide catalyst: a continuous stirred tank reactor study. Ind Eng Chem Res 27(11):2050–2055 Keuler J, Lorenzen L, Miachon S (2001) The dehydrogenation of 2-butanol over copper-based catalysts: optimising catalyst composition and determining kinetic parameters. Appl Catal A Gen 218(1–2):171–180 Wang Z, Ma H, Zhu W, Wang G (2002) Characterization of cu-ZnO-Cr2O3/SiO2 catalysts and application to dehydrogenation of 2-butanol to 2-butanone. React Kinet Catal Lett 76(2):271–279 Geravand E, Shariatinia Z, Yaripour F, Sahebdelfar S (2015) Copper-based nanocatalysts for 2-butanol dehydrogenation: screening and optimization of preparation parameters by response surface methodology. Korean J Chem Eng 32(12):2418–2428 Chen J, Yan L, Song W, Xu D (2017) Methane steam reforming thermally coupled with catalytic combustion in catalytic microreactors for hydrogen production. Int J Hydrog Energy 42(1):664–680 Nimkar SC, Mewada RK, Rosen MA (2017) Exergy and exergoeconomic analyses of thermally coupled reactors for methanol synthesis. Int J Hydrog Energy 42(47):28113–28127 Karimi M, Rahimpour MR, Rafiei R, Shariati A, Iranshahi D (2016) Improving thermal efficiency and increasing production rate in the double moving beds thermally coupled reactors by using differential evolution (DE) technique. Appl Therm Eng 94:543–558 Iranshahi D, Saeedi R, Azizi K, Nategh M (2017) A novel integrated thermally coupled moving bed reactors for naphtha reforming process with hydrodealkylation of toluene. Appl Therm Eng 112:1040–1056 Izurieta EM, Borio DO, Pedernera MN, López E (2017) Parallel plates reactor simulation: ethanol steam reforming thermally coupled with ethanol combustion. Int J Hydrog Energy 42(30):18794–18804 Chen J, Yan L, Song W, Xu D (2018) Comparisons between methane and methanol steam reforming in thermally integrated microchannel reactors for hydrogen production: a computational fluid dynamics study. Int J Hydrog Energy 43(31):14710–14728 Wiranarongkorn K, Authayanun S, Assabumrungrat S, Arpornwichanop A (2016) Analysis of thermally coupling steam and tri-reforming processes for the production of hydrogen from bio-oil. Int J Hydrog Energy 41(41):18370–18379 Patel KS, Sunol AK (2007) Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. Int J Hydrog Energy 32(13):2344–2358 Ramaswamy R, Ramachandran P, Duduković M (2008) Coupling exothermic and endothermic reactions in adiabatic reactors. Chem Eng Sci 63(6):1654–1667 Saeedi R, Iranshahi D (2017) Multi-objective optimization of thermally coupled reactor of CCR naphtha reforming in presence of SO2 oxidation to boost the gasoline octane number and hydrogen. Fuel 206:580–592 Elnashaie SS, Abashar ME, Al-Ubaid AS (1988) Simulation and optimization of an industrial ammonia reactor. Ind Eng Chem Res 27(11):2015–2022 Ludwig EE (2011) Applied process design for chemical and petrochemical plants. 4 ed: Elsevier Science Perona JJ, Thodos G (1957) Reaction kinetic studies: catalytic dehydrogenation of sec-butyl alcohol to methyl ethyl ketone. AICHE J 3(2):230–235 Dyson D, Simon J (1968) Kinetic expression with diffusion correction for ammonia synthesis on industrial catalyst. Ind Eng Chem Fundam 7(4):605–610 Rase HF (1977) Chemical reactor design for process plants: case studies and design data. Wiley, New York Olsson H (2013) Advanced process integration aspects of tubular reactors: Department of Energy and Environment. Chalmers University of Technology Fogler HS (2006) Elements of chemical reaction engineering. 4 ed: Prentice Hall PTR Green DW, Perry RH (2007) Perry's chemical Engineers' handbook. Eighth Edition, McGraw-Hill Education Ergun S, Orning AA (1949) Fluid flow through randomly packed columns and fluidized beds. Ind Eng Chem 41(6):1179–1184 Holman JP (2009) Heat transfer. 10 ed: McGraw-Hill Education Wen D, Ding Y (2006) Heat transfer of gas flow through a packed bed. Chem Eng Sci 61(11):3532–3542 Shah M (1967) Control simulation in ammonia production. Ind Eng Chem 59(1):72–83 Gaines LD (1977) Optimal temperatures for ammonia synthesis converters. Ind Eng Chem Process Des Dev 16(3):381–389 Amirabadi S, Kabiri S, Vakili R, Iranshahi D, Rahimpour MR (2013) Differential evolution strategy for optimization of hydrogen production via coupling of methylcyclohexane dehydrogenation reaction and methanol synthesis process in a thermally coupled double membrane reactor. Ind Eng Chem Res 52(4):1508–1522 Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992–1007 Deckwer W-D, Field RW (1992) Bubble column reactors, vol 200. Wiley, New York Cybulski A, Moulijn JA (2005) Structured catalysts and reactors2nd edn. CRC press, Boca Raton