A new photosensitive neuron model and its dynamics

Zhejiang University Press - Tập 21 Số 9 - Trang 1387-1396 - 2020
Yong Liu1, Wanjiang Xu1, Jun Ma2, Faris Alzahrani3, Aatef Hobiny3
1School of Mathematics and Statistics, Yancheng Teachers University, Yancheng, China
2Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
3NAAM-Research Group, Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agostini P, Petite G, 1988. Photoelectric effect under strong irradiation. Contemp Phys, 29(1):57–77. https://doi.org/10.1080/00107518808213751

Bao B, Yang Q, Zhu L, et al., 2019. Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations. Int J Bifurc Chaos, 29(10):1950134. https://doi.org/10.1142/S0218127419501347

Bao H, Wang N, Wu HG, et al., 2019. Bi-stability in an improved memristor-based third-order Wien-bridge oscillator. IETE Techn Rev, 36(2):109–116. https://doi.org/10.1080/02564602.2017.1422395

Batista CAS, Viana RL, Ferrari FAS, et al., 2013. Control of bursting synchronization in networks of Hodgkin-Huxley-type neurons with chemical synapses. Phys Rev E, 87(4):042713. https://doi.org/10.1103/PhysRevE.87.042713

Bera BK, Ghosh D, Lakshmanan M, 2016. Chimera states in bursting neurons. Phys Rev E, 93(1):012205. https://doi.org/10.1103/PhysRevE.93.012205

Bera BK, Rakshit S, Ghosh D, et al., 2019. Spike chimera states and firing regularities in neuronal hypernetworks. Chaos, 29(5):053115. https://doi.org/10.1063/L5088833

Binczak S, Jacquir S, Bilbault JM, et al., 2006. Experimental study of electrical FitzHugh-Nagumo neurons with modified excitability. Neur Networks, 19(5):684–693. https://doi.org/10.1016/j.neunet.2005.07.011

Brust D, 1965. Band-theoretic model for the photoelectric effect in silicon. Phys Rev, 139(2A):A489. https://doi.org/10.1103/PhysRev.139.A489

Cubero D, Baltanás JP, Casado-Pascual J, 2006. High-frequency effects in the FitzHugh-Nagumo neuron model. Phys Rev E, 73(6):061102. https://doi.org/10.1103/PhysRevE.73.061102

Duan LX, Cao QY, Wang ZJ, et al., 2018. Dynamics of neurons in the pre-Bötzinger complex under magnetic flow effect. Nonl Dynam, 94(3):1961–1971. https://doi.org/10.1007/s11071-018-4468-7

Erokhin V, Berzina T, Camorani P, et al., 2011. Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience, 1(1–2):24–30. https://doi.org/10.1007/s12668-011-0004-7

Etémé AS, Tabi CB, Mohamadou A, et al., 2019. Elimination of spiral waves in a two-dimensional Hindmarsh-Rose neural network under long-range interaction effect and frequency excitation. Phys A, 533:122037. https://doi.org/10.1016/j.physa.2019.122037

Fitzhugh R, 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys J, 1(6):445–466. https://doi.org/10.1016/S0006-3495(61)86902-6

Gaiko VA, 2011. Multiple limit cycle bifurcations of the FitzHugh-Nagumo neuronal model. Nonl Anal Theory Methods Appl, 74(18):7532–7542. https://doi.org/10.1016/j.na.2011.08.017

Ge MY, Jia Y, Xu Y, et al., 2018. Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonl Dynam, 91(1):515–523. https://doi.org/10.1007/s11071-017-3886-2

Georges AT, 1995. Theory of the multiphoton photoelectric effect: a stepwise excitation process. Phys Rev B, 51(19): 13735–13738. https://doi.org/10.1103/PhysRevB.51.13735

Gu HG, Pan BB, 2015. A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonl Dynam, 81(4):2107–2126. https://doi.org/10.1007/s11071-015-2129-7

Hagell P, Piccini P, Björklund A, et al., 2002. Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci, 5(7):627–628. https://doi.org/10.1038/nn863

Haghiri S, Ahmadi A, Saif M, 2016. VLSI implementable neuron-astrocyte control mechanism. Neurocomputing, 214:280–296. https://doi.org/10.1016/j.neucom.2016.06.015

Han XJ, Bi QS, Zhang C, et al., 2014. Study of mixed-mode oscillations in a parametrically excited van der Pol system. Nonl Dynam, 77(4):1285–1296. https://doi.org/10.1007/s11071-014-1377-2

Han XJ, Bi QS, Ji P, et al., 2015. Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys Rev E, 92(1):012911. https://doi.org/10.1103/PhysRevE.92.012911

Han XJ, Bi QS, Kurths J, 2018. Route to bursting via pulse-shaped explosion. Phys Rev E, 98(1):010201(R). https://doi.org/10.1103/PhysRevE.98.010201

Hauschildt B, Janson NB, Balanov A, et al., 2006. Noise-induced cooperative dynamics and its control in coupled neuron models. Phys Rev E, 74(5):051906. https://doi.org/10.1103/PhysRevE.74.051906

Hu XY, Liu CX, 2019. Dynamic property analysis and circuit implementation of simplified memristive Hodgkin-Huxley neuron model. Nonl Dynam, 97(2):1721–1733. https://doi.org/10.1007/s11071-019-05100-8

Hu XY, Liu CX, Liu L, et al., 2016. An electronic implementation for Morris-Lecar neuron model. Nonl Dynam, 84(4):2317–2332. https://doi.org/10.1007/s11071-016-2647-y

Jia B, Wu YC, He D, et al., 2018. Dynamics of transitions from anti-phase to multiple in-phase synchronizations in inhibitory coupled bursting neurons. Nonl Dynam, 93(3): 1599–1618. https://doi.org/10.1007/s11071-018-4279-x

Keener JP, 1983. Analog circuitry for the van der Pol and FitzHugh-Nagumo equations. IEEE Trans Syst Man Cybern, SMC-13(5):1010–1014. https://doi.org/10.1109/TSMC.1983.6313098

Kyprianidis IM, Papachristou V, Stouboulos IN, et al., 2012. Dynamics of coupled chaotic Bonhoeffer-van der Pol oscillators. WSEAS Trans Syst, 11(9):516–526.

Liu ZL, Ma J, Zhang G, et al., 2019. Synchronization control between two Chua’s circuits via capacitive coupling. Appl Math Comput, 360:94–106. https://doi.org/10.1016/j.amc.2019.05.004

Lv M, Ma J, Yao YG, et al., 2019. Synchronization and wave propagation in neuronal network under field coupling. Sci China Technol Sci, 62(3):448–457. https://doi.org/10.1007/s11431-018-9268-2

Ma J, Zhang G, Hayat T, et al., 2019a. Model electrical activity of neuron under electric field. Nonl Dynam, 95(2): 1585–1598. https://doi.org/10.1007/s11071-018-4646-7

Ma J, Yang ZQ, Yang LJ, et al., 2019b. A physical view of computational neurodynamics. J Zhejiang Univ-Sci A (Appl Phys & Eng), 20(9):639–659. https://doi.org/10.1631/jzus.A1900273

Ma YQ, Wang ZR, Yu SY, et al., 2018. A novel spiking neural network of receptive field encoding with groups of neurons decision. Front Inform Technol Electron Eng, 19(1): 139–150. https://doi.org/10.1631/FITEE.1700714

Meng FQ, Zeng XQ, Wang ZL, 2019. Dynamical behavior and synchronization in time-delay fractional-order coupled neurons under electromagnetic radiation. Nonl Dynam, 95(2):1615–1625. https://doi.org/10.1007/s11071-018-4648-5

Mondal A, Upadhyay RK, 2018. Diverse neuronal responses of a fractional-order Izhikevich model: journey from chattering to fast spiking. Nonl Dynam, 91(2):1275–1288. https://doi.org/10.1007/s11071-017-3944-9

Mostaghimi S, Nazarimehr F, Jafari S, et al., 2019. Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Appl Math Comput, 348:42–56. https://doi.org/10.1016/j.amc.2018.11.030

Nair MV, Muller LK, Indiveri G, 2017. A differential memristive synapse circuit for on-line learning in neuromorphic computing systems. Nano Fut, 1(3):035003. https://doi.org/10.1088/2399-1984/aa954a

Nazari S, Amiri M, Faez K, et al., 2015. Multiplier-less digital implementation of neuron-astrocyte signalling on FPGA. Neurocomputing, 164:281–292. https://doi.org/10.1016/j.neucom.2015.02.041

Pankratova EV, Kalyakulina AI, Stasenko SV, et al., 2019. Neuronal synchronization enhanced by neuron-astrocyte interaction. Nonl Dynam, 97(1):647–662. https://doi.org/10.1007/s11071-019-05004-7

Park S, Chu M, Kim J, et al., 2015. Electronic system with memristive synapses for pattern recognition. Sci Rep, 5(1):10123. https://doi.org/10.1038/srep10123

Pham VT, Jafari S, Vaidyanathan S, et al., 2016. A novel memristive neural network with hidden attractors and its circuitry implementation. Sci China Technol Sci, 59(3): 358–363. https://doi.org/10.1007/s11431-015-5981-2

Postnov DE, Koreshkov RN, Brazhe NA, et al., 2009. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys, 35(4): 425–445. https://doi.org/10.1007/s10867-009-9156-x

Rajagopal K, Nazarimehr F, Karthikeyan A, et al., 2019. Dynamics of a neuron exposed to integer- and fractional-order discontinuous external magnetic flux. Front Inform Technol Electron Eng, 20(4):584–590. https://doi.org/10.1631/FITEE.1800389

Rakshit S, Bera BK, Ghosh D, et al., 2018a. Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks. Phys Rev E, 97(5): 052304. https://doi.org/10.1103/PhysRevE.97.052304

Rakshit S, Bera BK, Ghosh D, 2018b. Synchronization in a temporal multiplex neuronal hypernetwork. Phys Rev E, 98(3):032305. https://doi.org/10.1103/PhysRevE.98.032305

Rakshit S, Ray A, Bera BK, et al., 2018c. Synchronization and firing patterns of coupled Rulkov neuronal map. Nonl Dynam, 94(2):785–805. https://doi.org/10.1007/s11071-018-4394-8

Richardson MJE, Swarbrick R, 2010. Firing-rate response of a neuron receiving excitatory and inhibitory synaptic shot noise. Phys Rev Lett, 105(17):178102. https://doi.org/10.1103/PhysRevLett.105.178102

Rostami Z, Pham VT, Jafari S, et al., 2018. Taking control of initiated propagating wave in a neuronal network using magnetic radiation. Appl Math Comput, 338:141–151. https://doi.org/10.1016/j.amc.2018.06.004

Seifert G, Steinhäuser C, 2013. Neuron-astrocyte signaling and epilepsy. Exp Neurol, 244:4–10. https://doi.org/10.1016/j.expneurol.2011.08.024

Takembo CN, Mvogo A, Fouda HPE, et al., 2019a. Effect of electromagnetic radiation on the dynamics of spatio-temporal patterns in memristor-based neuronal network. Nonl Dynam, 95(2):1067–1078. https://doi.org/10.1007/s11071-018-4616-0

Takembo CN, Mvogo A, Fouda HPE, et al., 2019b. Wave pattern stability of neurons coupled by memristive electromagnetic induction. Nonl Dynam, 96(2):1083–1093. https://doi.org/10.1007/s11071-019-04841-w

Tang J, Zhang J, Ma J, et al., 2019. Noise and delay sustained chimera state in small world neuronal network. Sci China Technol Sci, 62(7):1134–1140. https://doi.org/10.1007/s11431-017-9282-x

Upadhyay RK, Mondal A, Teka WW, 2017. Mixed mode oscillations and synchronous activity in noise induced modified Morris-Lecar neural system. Int J Bifurc Chaos, 27(5):1730019. https://doi.org/10.1142/S0218127417300191

Uzun R, Yilmaz E, Ozer M, 2017. Effects of autapse and ion channel block on the collective firing activity of Newman-Watts small-world neuronal networks. Phys A, 486:386–396. https://doi.org/10.1016/j.physa.2017.05.049

Wang CN, Lv M, Alsaedi A, et al., 2017. Synchronization stability and pattern selection in a memristive neuronal network. Chaos, 27(11):113108. https://doi.org/10.1063/1.5004234

Wang YH, Xu XY, Zhu YT, et al., 2019. Neural energy mechanism and neurodynamics of memory transformation. Nonl Dynam, 97(1):697–714. https://doi.org/10.1007/s11071-019-05007-4

Wu FQ, Wang CN, Xu Y, et al., 2016. Model of electrical activity in cardiac tissue under electromagnetic induction. Sci Rep, 6(1):28. https://doi.org/10.1038/s41598-016-0031-2

Wu FQ, Wang CN, Jin WY, et al., 2017. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Phys A, 469:81–88. https://doi.org/10.1016/j.physa.2016.11.056

Wu FQ, Ma J, Zhang G, 2019. A new neuron model under electromagnetic field. Appl Math Comput, 347:590–599. https://doi.org/10.1016/j.amc.2018.10.087

Xu F, Zhang JQ, Fang TT, et al., 2018. Synchronous dynamics in neural system coupled with memristive synapse. Nonl Dynam, 92(3):1395–1402. https://doi.org/10.1007/s11071-018-4134-0

Xu Q, Zhang QL, Qian H, et al., 2018. Crisis-induced coexisting multiple attractors in a second-order nonautono-mous memristive diode bridge-based circuit. Int J Circ Theor Appl, 46(10):1917–1927. https://doi.org/10.1002/cta.2492

Xu Y, Jia Y, Ma J, et al., 2018a. Collective responses in electrical activities of neurons under field coupling. Sci Rep, 8(1):1349. https://doi.org/10.1038/s41598-018-19858-1

Xu Y, Jia Y, Ge MY, et al., 2018b. Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction. Neurocomputing, 283:196–204. https://doi.org/10.1016/j.neucom.2017.12.036

Xu Y, Jia Y, Wang HW, et al., 2019. Spiking activities in chain neural network driven by channel noise with field coupling. Nonl Dynam, 95(4):3237–3247. https://doi.org/10.1007/s11071-018-04752-2

Yao Z, Ma J, Yao YG, et al., 2019. Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonl Dynam, 96(1):205–217. https://doi.org/10.1007/s11071-019-04784-2

Ye WJ, Mai WD, Hu GW, 2018. Effects of the electromagnetic radiation on cognitive performance: a model study. Nonl Dynam, 93(4):2473–2485. https://doi.org/10.1007/s11071-018-4337-4

Yu DS, Zheng CY, Iu HHC, et al., 2017. A new circuit for emulating memristors using inductive coupling. IEEE Access, 5:1284–1295. https://doi.org/10.1109/ACCESS.2017.2649573

Yu Y, Zhang C, Han XJ, 2017. Routes to bursting in active control system with multiple time delays. Nonl Dynam, 88(3):2241–2254. https://doi.org/10.1007/s11071-017-3373-9

Zhang YZ, Liu Z, Wu HG, et al., 2019a. Dimensionality reduction analysis for detecting initial effects on synchronization of memristor-coupled system. IEEE Access, 7: 109689–109698. https://doi.org/10.1109/ACCESS.2019.2933252

Zhang YZ, Liu Z, Wu HG, et al., 2019b. Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos Sol Fract, 127:354–363. https://doi.org/10.1016/j.chaos.2019.07.004