A new multiscale phase field method to simulate failure in composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Evans, 1990, Perspectives on the development of high-toughness ceramics, J Am Ceram Soc, 73, 187, 10.1111/j.1151-2916.1990.tb06493.x
Prasad, 2004, Fracture behaviour of 2D weaved, silica–silica continuous fibre–reinforced, ceramic–matrix composites (CFCCs), Eng Fract Mech, 71, 2589, 10.1016/j.engfracmech.2004.02.005
Li, 2018, Role of interfaces in mechanical properties of ceramic matrix composites, 355
Belytschko, 1994, Fracture and crack growth by element free Galerkin methods, Model Simul Mater Sci Eng, 2, 519, 10.1088/0965-0393/2/3A/007
Pant, 2011, Evaluation of mixed mode stress intensity factors for interface cracks using EFGM, Appl Math Modell, 35, 3443, 10.1016/j.apm.2011.01.010
Belytschko, 1999, Elastic crack growth in finite elements with minimal remeshing, International Journal of Numerical Methods in Engineering, 45, 601, 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
Moes, 1999, A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Sukumar, 2004, Partition of unity enrichment for bimaterial interface cracks, International Journal of Numerical Methods in Engineering, 59, 1075, 10.1002/nme.902
Singh, 2012, The numerical simulation of fatigue crack growth using extended finite element method, Int J Fatigue, 36, 109, 10.1016/j.ijfatigue.2011.08.010
Patil, 2017, A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials, Int J Mech Sci, 122, 277, 10.1016/j.ijmecsci.2017.01.028
Bansal, 2017, A stochastic XFEM model for the tensile strength prediction of heterogeneous graphite based on microstructural observations, J Nucl Mater, 487, 143, 10.1016/j.jnucmat.2016.12.045
Moës, 2011, A level set based model for damage growth: The thick level set approach, Int J Numer Methods Eng, 86, 358, 10.1002/nme.3069
Sutula, 2018, Minimum energy multiple crack propagation. Part I: Theory and state of the art review, Eng Fract Mech, 191, 205, 10.1016/j.engfracmech.2017.07.028
Sutula, 2018, Minimum energy multiple crack propagation. Part-II: Discrete Solution with XFEM, Eng Fract Mech, 191, 225, 10.1016/j.engfracmech.2017.07.029
Sutula, 2018, Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications, Eng Fract Mech, 191, 257, 10.1016/j.engfracmech.2017.08.004
Benson, 2010, A generalized finite element formulation for arbitrary basis functions: From Isogeometric analysis to XFEM, International Journal of Numerical Methods in Engineering, 83, 765, 10.1002/nme.2864
Bhardwaj, 2016, Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA, Theor Appl Fract Mech, 85, 294, 10.1016/j.tafmec.2016.04.004
Atroshchenko, 2018, Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub‐and super-geometric analysis to Geometry Independent Field approximaTion (GIFT), Int J Numer Methods Eng, 114, 1131, 10.1002/nme.5778
Poh, 2017, Localizing gradient damage model with decreasing interactions, Int J Numer Methods Eng, 110, 503, 10.1002/nme.5364
Nguyen, 2018, Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements, Comput Meth Appl Mech Eng, 328, 498, 10.1016/j.cma.2017.09.019
Sun, 2016, Homogenization of intergranular fracture towards a transient gradient damage model, J Mech Phys Solids, 95, 374, 10.1016/j.jmps.2016.05.035
Francfort, 1998, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 1319, 10.1016/S0022-5096(98)00034-9
Bourdin, 2007, Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Boundaries, 9, 411, 10.4171/IFB/171
Amor, 2009, Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J Mech Phys Solids, 57, 1209, 10.1016/j.jmps.2009.04.011
Miehe, 2010, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int J Numer Methods Eng, 83, 1273, 10.1002/nme.2861
Miehe, 2010, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput Meth Appl Mech Eng, 199, 2765, 10.1016/j.cma.2010.04.011
Li, 2016
Borden, 2014, A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput Meth Appl Mech Eng, 273, 100, 10.1016/j.cma.2014.01.016
Ambati, 2015, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput Mech, 55, 383, 10.1007/s00466-014-1109-y
Doan, 2016, Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy, Compos Part B, 99, 266, 10.1016/j.compositesb.2016.06.016
Doan, 2017, A rate-dependent hybrid phase field model for dynamic crack propagation, J Appl Phys, 122, 115102, 10.1063/1.4990073
Amiri, 2014, Phase-field modeling of fracture in linear thin shells, Theor Appl Fract Mech, 69, 102, 10.1016/j.tafmec.2013.12.002
Areias, 2016, Phase-field analysis of finite-strain plates and shells including element subdivision, Comput Meth Appl Mech Eng, 312, 322, 10.1016/j.cma.2016.01.020
Msekh, 2015, Abaqus implementation of phase-field model for brittle fracture, Comput Mater Sci, 96, 472, 10.1016/j.commatsci.2014.05.071
Liu, 2016, Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput Mater Sci, 121, 35, 10.1016/j.commatsci.2016.04.009
Zhou, 2018, Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies, Adv Eng Software, 122, 31, 10.1016/j.advengsoft.2018.03.012
Zhou, 2018, Phase field modelling of crack propagation, branching and coalescence in rocks, Theor Appl Fract Mech, 96, 174, 10.1016/j.tafmec.2018.04.011
Zhou, 2018, A phase-field modeling approach of fracture propagation in poroelastic media, Eng Geol, 240, 189, 10.1016/j.enggeo.2018.04.008
Nguyen, 2015, A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Eng Fract Mech, 139, 18, 10.1016/j.engfracmech.2015.03.045
Chakraborty, 2016, A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite, J Nucl Mater, 475, 200, 10.1016/j.jnucmat.2016.04.006
Hamdia, 2015, Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modelling, Compos Struct, 133, 1177, 10.1016/j.compstruct.2015.08.051
Msekh, 2018, Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model, Eng Fract Mech, 188, 287, 10.1016/j.engfracmech.2017.08.002
Mahnken, 2013, Goal-oriented adaptive refinement for phase field modeling with finite elements, Int J Numer Methods Eng, 94, 418, 10.1002/nme.4464
Heister, 2018, A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput Meth Appl Mech Eng, 290, 466, 10.1016/j.cma.2015.03.009
Lee, 2016, Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput Meth Appl Mech Eng, 305, 111, 10.1016/j.cma.2016.02.037
Zhang, 2018, Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton's iteration, J Comput Phys, 356, 127, 10.1016/j.jcp.2017.11.033
Areias, 2016, Damage and fracture algorithm using the screened Poisson equation and local remeshing, Eng Fract Mech, 158, 116, 10.1016/j.engfracmech.2015.10.042
Areias, 2018, Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation, Eng Fract Mech, 189, 339, 10.1016/j.engfracmech.2017.11.017
Badnava, 2018, An h-adaptive thermo-mechanical phase field model for fracture, Finite Elem Anal Des, 138, 31, 10.1016/j.finel.2017.09.003
Zhang, 2010, Extended multiscale finite element method for mechanical analysis of heterogeneous materials, Acta Mechanica Sinica, 26, 899, 10.1007/s10409-010-0393-9
Wu, 2015, A Concurrent Multiscale Method for Simulation of Crack Propagation, Acta Mech Solida Sin, 28, 235, 10.1016/S0894-9166(15)30011-2
Patil, 2018, An adaptive multiscale phase field method for brittle fracture, Comput Meth Appl Mech Eng, 329, 254, 10.1016/j.cma.2017.09.021
Miehe, 2001, Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill's family of generalized strain tensors, Comm, 17, 337
Moran, 1987, A general treatment of crack tip contour integrals, Int J Fract, 27, 295, 10.1007/BF00276359
Borden, 2012, A phase-field description of dynamic brittle fracture, Comput Meth Appl Mech Eng, 217–220, 77, 10.1016/j.cma.2012.01.008
Evans, 1991, The role of interfaces in fiber-reinforced brittle matrix composites, Compos Sci Technol, 42, 3, 10.1016/0266-3538(91)90010-M
Chawla, 2006, 275
Chawla, 1993, 162
Kriz, 1979
Kriz, 1984, Influence of ply cracks on fracture strength of graphite/epoxy laminates at 76K, Am Soc Testing Mater, 836, 250