A new methodology to efficiently test pitting corrosion: design of a 3D-printed sample holder to avoid the occurrence of crevice corrosion in chemically aggressive media

Journal of Applied Electrochemistry - Tập 53 Số 1 - Trang 167-176 - 2023
Brent Verhoeven1, Maarten Nagels1, Pieter Van Aken1, R. Gaggiano2, Barbara Rossi3, Walter Bogaerts4, Raf Dewil5
1Department of Chemical Engineering, Process and Environmental Technology Lab, KU Leuven, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
2RD&D Department, ONDRAF/NIRAS, Kunstlaan 14, 1210, Brussels, Belgium
3Department of Civil Engineering, Materials and Structures, KU Leuven, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
4Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
5Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Esmailzadeh S, Aliofkhazraei M, Sarlak H (2018) Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Prot Met Phys Chem Surf 54:976–989. https://doi.org/10.1134/S207020511805026X

Galvele JR (2005) Tafel’s law in pitting corrosion and crevice corrosion susceptibility. Corros Sci 47:3053–3067. https://doi.org/10.1016/j.corsci.2005.05.043

Song G-L, Xu Z (2012) Crystal orientation and electrochemical corrosion of polycrystalline Mg. Corros Sci 63:100–112. https://doi.org/10.1016/j.corsci.2012.05.019

Zhang J, Yuan J, Qiao Y et al (2003) The corrosion and passivation of SS304 stainless steel under square wave electric field. Mater Chem Phys 79:43–48. https://doi.org/10.1016/S0254-0584(02)00445-5

Shen J, Song G, Zheng D, Wang Z (2019) A double-mode cell to measure pitting and crevice corrosion. Mater Corros 70:2228–2237. https://doi.org/10.1002/maco.201910932

ASTM G150-13 (2013) Standard test method for electrochemical critical pitting temperature testing of stainless steels. ASTM International, West Conshohocken

Vanegas M, Wang K, Iannuzzi M (2022) Technical note: methodology development to study two-dimensional stainless steel pitting corrosion mechanisms using foil samples. Corrosion 78(6):473–478. https://doi.org/10.5006/4057

Panindre AM, Frankel GS (2021) Technical note: electrochemical testing for pitting corrosion above ambient temperatures using the syringe cell. Corrosion 77(9):1025–1028. https://doi.org/10.5006/3854

Ovarfort R (1988) New electrochemical cell for pitting corrosion testing. Corros Sci 28:135–140. https://doi.org/10.1016/0010-938X(88)90090-X

Husain A, Brahme PS, Al-Shamali O (2007) Development of a modified test cell for AC impedance testing of coated Al fins. J Coat Technol Res 4:317–325. https://doi.org/10.1007/s11998-007-9043-y

Berner M, Liu H-P, Olsson C-OA (2008) Estimating localised corrosion resistance of low alloy stainless steels: comparison of pitting potentials and critical pitting temperatures measured on lean duplex stainless steel LDX 2101 after sensitation. Corros Eng Sci Technol 43:111–116. https://doi.org/10.1179/174327808X286347

Ghayad IM, Hamada AS, Girgis NN, Ghanem W (2004) Effect of cold working on the aging and corrosion behavior of Fe-Mn-Al stainless steel. Nice, France, p 10

Cardoso JL, Silva Nunes Cavalcante AL, Araujo Vieira RC et al (2016) Pitting corrosion resistance of austenitic and superaustenitic stainless steels in aqueous medium of NaCl and H2SO4. J Mater Res 31:1755–1763. https://doi.org/10.1557/jmr.2016.198

Han D, Jiang YM, Shi C et al (2012) Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions. J Mater Sci 47:1018–1025. https://doi.org/10.1007/s10853-011-5889-6

Kennell GF, Evitts RW, Heppner KL (2008) A critical crevice solution and IR drop crevice corrosion model. Corros Sci 50:1716–1725. https://doi.org/10.1016/j.corsci.2008.02.020

ASTM G61-86 (2018) Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys. ASTM International, West Conshohocken

ASTM G5-94 (2004) Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements. ASTM International, West Conshohocken

Somrerk CA, Wachirasiri W, Lothongkum G (2013) Effects of chloride and sulphate ions on the experimental E-pH diagrams of AISI 316L stainless steel in deaerated aqueous solutions. Adv Mat Res 813:443–446. https://doi.org/10.1002/maco.201910932

Lothongkum G, Vongbandit P, Nongluck P (2006) Experimental determination of E-pH diagrams for 316L stainless steel in air‐saturated aqueous solutions containing 0‐5,000 ppm of chloride using a potentiodynamic method. Anti-corros Method Mater 53:169–174. https://doi.org/10.1108/00035590610665581

Refaey SAM, Taha F, Abd Al-Malak AM (2006) Corrosion and inhibition of 316L stainless steel in neutral medium by 2-mercaptobenzimidazole. Int J Electrochem Sci. https://doi.org/10.20964/1020080

King F (2009) Corrosion resistance of austenitic and duplex stainless steels in environments related to UK geological disposal. Quintessa Limited, Oxfordshire, United Kingdom

Olssen CAO (2018) Wet corrosion of stainless steels and other chromium-bearing alloys. Encyclopedia of interfacial chemistry: surface science and electrochemistry encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier, Amsterdam, pp 535–542

Huang T-S, Tsai W-T, Pan S-J, Chang K-C (2018) Pitting corrosion behaviour of 2101 duplex stainless steel in chloride solutions. Corros Eng Sci Technol 53:9–15. https://doi.org/10.1080/1478422X.2017.1394020

Klapper HS, Stevens J, Wiese G (2013) Pitting corrosion resistance of CrMn Austenitic stainless steel in simulated drilling conditions—role of pH, temperature, and chloride concentration. Corrosion 69:1095–1102. https://doi.org/10.5006/0947

Elsener B, Addari D, Coray S, Rossi A (2011) Stainless steel reinforcing bars - reason for their high pitting corrosion resistance. Mater Corros 62:111–119. https://doi.org/10.1002/maco.201005826

Gastaldi M, Bertolini L (2014) Effect of temperature on the corrosion behaviour of low-nickel duplex stainless steel bars in concrete. Cem Concr Res 56:52–60. https://doi.org/10.1016/j.cemconres.2013.11.004

Moser RD, Singh PM, Kahn LF, Kurtis KE (2012) Chloride-induced corrosion resistance of high- strength stainless steels in simulated alkaline and carbonated concrete pore solutions. Corros Sci 57:241–253. https://doi.org/10.1016/j.corsci.2011.12.012

Blanco G, Bautista A, Takenouti H (2006) EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions. Cem Concr Comp 28:212–219. https://doi.org/10.1016/j.cemconcomp.2006.01.012

Paredes EC, Bautista A, Alvarez SM, Velasco F (2012) Influence of the forming process of corrugated stainless steels on their corrosion behaviour in simulated pore solutions. Corros Sci 58:52–61. https://doi.org/10.1016/j.corsci.2012.01.010

Mesquita TJ, Chauveau E, Mantel M et al (2012) Lean duplex stainless steels—The role of molybdenum in pitting corrosion of concrete reinforcement studied with industrial and laboratory castings. Mater Chem Phys 132:967–972. https://doi.org/10.1016/j.matchemphys.2011.12.042

Saadawy M (2012) Kinetics of pitting dissolution of austenitic stainless steel 304 in sodium chloride solution. ISRN Corros 2012:1–5. https://doi.org/10.5402/2012/916367

Alonso-Falleiros N, Wolynec S (2002) Correlation between corrosion potential and pitting potential for AISI 304L austenitic stainless steel in 3.5% NaCl aqueous solution. Mater Res 5:77–84. https://doi.org/10.1590/S1516-14392002000100013

Xu C, Zhang Y, Cheng G, Zhu W (2008) Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria. Mater Charact 59:245–255. https://doi.org/10.1016/j.matchar.2007.01.001

He L, Wang Y, Singh PM (2017) Pitting behavior of lean duplex stainless steels in thiosulfate- containing paper machine environment. New Orleans, United States of America

Shet N, Nazareth R, Suchetan PA (2019) Corrosion inhibition of 316 stainless steel in 2 M HCl by 4- {[4-(dimethylamino)benzylidene]amino}-5-methyl-4H-1,2,4-triazole-3-thiol. Chem Data Collect 20:100209. https://doi.org/10.1016/j.cdc.2019.100209

Abdallah M, Salem MM, Al Jahdaly BA et al (2017) Corrosion inhibition of stainless steel type 316 L in 1.0 M HCl solution using 1,3-thiazolidin-5-one derivatives. Int J Electrochem Sci 12:4543–4562. https://doi.org/10.20964/2017.05.35

Abdallah M, Hazazi OA, Fouda AS, Abdel-Fatah A (2015) Corrosion inhibition of stainless steel type 316L in hydrochloric acid solution using p-aminoazobenzene derivatives. Prot Met Phys Chem Surf 51:473–480. https://doi.org/10.1134/S2070205115030028

Stansbury EE, Buchanan RA (2000) Fundamentals of electrochemical corrosion. ASM International, Materials Park, OH

Kelly RG (2003) Electrochemical techniques in corrosion science and engineering. Marcel Dekker, New York

Lopes RHC (2011) Kolmogorov-Smirnov test. International encyclopedia of statistical science. Springer, Berlin, Germany, pp 718–720