A new method for the estimation of variance matrix with prescribed zeros in nonlinear mixed effects models
Tóm tắt
We propose a new method for the Maximum Likelihood Estimator (MLE) of nonlinear mixed effects models when the variance matrix of Gaussian random effects has a prescribed pattern of zeros (PPZ). The method consists of coupling the recently developed Iterative Conditional Fitting (ICF) algorithm with the Expectation Maximization (EM) algorithm. It provides positive definite estimates for any sample size, and does not rely on any structural assumption concerning the PPZ. It can be easily adapted to many versions of EM.
Tài liệu tham khảo
Anderson, T.W.: Asymptotically efficient estimation of covariance matrices with linear structure. Ann. Stat. 1, 135–141 (1973)
Beal, S.L., Sheiner, L.B.: NONMEM user’s guide. Nonlinear mixed effects models for repeated measures data. University of California, San Francisco (1992)
Cepeda, E.C., Gamerman, D.: Bayesian modeling of joint regressions for the mean and covariance matrix. Biom. J. 46(4), 430–440 (2004)
Chaudhuri, S., Drton, M., Richardson, T.S.: Estimation of a covariance matrix with zeros. Biometrika 94(1), 199–216 (2007)
Concordet, D., Nunez, O.G.: A simulated pseudo-maximum likelihood estimator for nonlinear mixed models. Comput. Stat. Data Anal. 39(2), 187–201 (2002)
Cox, D.R., Wermuth, N., Marchetti, G.: Decompositions and estimation of a chain of covariances. Technical Report, Department of Mathematical Statistics, Chalmers Goteborgs Universitet (2004)
Dahl, J., Vandenberghe, L., Roychowdhury, V.: Covariance selection for non-chordal graphs via chordal embedding. Preprint, available on http://www.ee.ucla.edu/~vandenbe/covsel.html (2006)
Davidian, M., Giltinan, D.M.: Nonlinear Models for Repeated Measurement Data. Chapman and Hall, New York (1995)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977). With discussion
Drton, M., Perlman, M.D.: Model selection for Gaussian concentration graphs. Biometrika 91, 591–602 (2004)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990). Corrected reprint of the 1985 original
Jamshidian, M., Jennrich, R.I.: Standard errors for em estimation. J. R. Stat. Soc. B 62, 257–270 (2000)
Kuhn, E., Lavielle, M.: Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 49(4), 1020–1038 (2005)
Lindstrom, M.J., Bates, D.M.: Nonlinear mixed effects models for repeated measures data. Biometrics 46, 673–687 (1990)
Pinheiro, J.C., Bates, D.M.: Approximation of the log-likelihood function in the nonlinear mixed effects models. J. Comput. Graph. Stat. 4, 12–35 (1995)
Pourahmadi, M.: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86(3), 677–690 (1999)
Pourahmadi, M.: Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika 87(2), 425–435 (2000)
Vonesh, E.F., Carter, R.L.: Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics 48, 1–17 (1992)
Wang, J.: EM algorithms for nonlinear mixed effects models. Comput. Stat. Data Anal. 51(6), 3244–3256 (2007)
Wolfinger, R.D.: Laplace’s approximation for nonlinear mixed models. Biometrika 80(4), 791–795 (1993)
Wolfinger, R.D.: Heterogeneous variance-covariance structures for repeated measures. J. Agric. Biol. Environ. Stat. 1(2), 205–230 (1996)
Wu, C.F.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95–103 (1983)
Ye, H., Pan, J.: Modelling of covariance structures in generalised estimating equations for longitudinal data. Biometrika 93, 927–941 (2006)
Zhang, F. (ed.): The Schur Complement and its Applications. Numerical Methods and Algorithms, vol. 4. Springer, New York (2005)
Zimmerman, D.L., Núñez-Antón, V.: Parametric modelling of growth curve data: an overview. Test 10(1), 1–73 (2001). With comments and a rejoinder by the authors