A new lead free double perovskites K2Ti(Cl/Br)6; a promising materials for optoelectronic and transport properties; probed by DFT

Materials Chemistry and Physics - Tập 264 - Trang 124435 - 2021
Taher Ghrib1,2, Amani Rached1,2, Eman Algrafy1,2, Ibtessam A. Al-nauim1,2, Hind Albalawi3, Mohammad Ashiq1,2, Bakhtiar Ul Haq4, Q. Mahmood1,2
1Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
2Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
3Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
4Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang, 2015, Solution-phase synthesis of cesium leads halide perovskite nanowires, J. Am. Chem. Soc., 137, 9230, 10.1021/jacs.5b05404

Zhang, 2014, Energy barrier at the N719-dye/CsSnI3 interface for photo generated holes in dye-sensitized solar cells, Sci. Rep., 4, 6954, 10.1038/srep06954

Murtaza, 2011, First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M = Cl, Br, I), Phys. B, 406, 3222, 10.1016/j.physb.2011.05.028

Hao, 2014, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells, J. Am. Chem., 136, 8094, 10.1021/ja5033259

Maughan, 2016, Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6, J. Am. Chem. Soc., 138, 8453, 10.1021/jacs.6b03207

Lee, 2014, Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor, J. Am. Chem. Soc., 136, 15379, 10.1021/ja508464w

Saparov, 2016, Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor, Chem. Mater., 28, 2315, 10.1021/acs.chemmater.6b00433

Sakai, 2017, Solution-processed cesium hexabromopalladate (IV), Cs2PdBr6, for optoelectronic applications, J. Am. Chem. Soc., 139, 6030, 10.1021/jacs.6b13258

Qiu, 2017, From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with band gap of 1.48eV and high absorption coefficient, Sol. Energy Mater. Sol. Cell., 159, 227, 10.1016/j.solmat.2016.09.022

Maughan, 2016, Defect tolerance to intolerance in the vacancy-ordered double perovskites semiconductors Cs2SnI6 and Cs2TeI6, J. Am. Chem. Soc., 138, 8453, 10.1021/jacs.6b03207

Cai, 2017, Computational study of halide perovskite-derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability, Chem. Mater., 29, 7740, 10.1021/acs.chemmater.7b02013

Fedorovskiy, 2019, The role of Goldschmidt's tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range, Small Methods, 1900426

Yin, 2015, Halide perovskite materials for solar cells: a theoretical review, J. Mater. Chem. A, 3, 8926, 10.1039/C4TA05033A

Frolova, 2016, Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells, J. Phys. Chem. Lett., 7, 4353, 10.1021/acs.jpclett.6b02122

Noel, 2014, Lead-free organic inorganic tin halide perovskites for photovoltaic applications, Energy Env. Sci., 7, 3061, 10.1039/C4EE01076K

Slavney, 2016, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc., 138, 2138, 10.1021/jacs.5b13294

Ju, 2019, Tellurium-based double perovskites A2TeX6 with tunable band gap and long carrier diffusion length for optoelectronic applications, ACS Energy Lett, 4, 228, 10.1021/acsenergylett.8b02113

Wu, 2019, Stabilizing the CsSnCl3 perovskite lattice by B-site substitution for enhanced light emission, Chem. Mater., 31, 4999, 10.1021/acs.chemmater.9b00433

Kopacic, 2018, Enhanced performance of germanium halide perovskite solar cells through compositional engineering, ACS Appl. Energy Mater., 1, 343, 10.1021/acsaem.8b00007

Abulikemu, 2016, Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9, J. Mater. Chem. A, 4, 12504, 10.1039/C6TA04657F

Cortecchia, 2016, Lead-free MA2CuClxBr4–x hybrid perovskites, Inorg. Chem., 55, 1044, 10.1021/acs.inorgchem.5b01896

Volonakis, 2016, Lead-free halide double perovskites via heterovalent substitution of noble metals, J. Phys. Chem. Lett., 7, 1254, 10.1021/acs.jpclett.6b00376

Chen, 2018, Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells, Joule, 2, 558, 10.1016/j.joule.2018.01.009

Ju, 2018, Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications, ACS Energy Lett, 3, 297, 10.1021/acsenergylett.7b01167

Zeng, 2018, Earth-abundant nontoxic titanium (IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications, ACS Energy Lett, 3, 297, 10.1021/acsenergylett.7b01167

Chakraborty, 2019, Numerical study of Cs2TiX6 (X=Br-, I-, F- and Cl-) based perovskite solar cell using SCAPS-1D device simulation, Sol. Energy, 194, 886, 10.1016/j.solener.2019.11.005

Euvrard, 2020, Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications, J. Mater. Chem. A, 8, 4049, 10.1039/C9TA13870F

Kong, 2020, Solution processed lead-free cesium titanium halide perovskites and their structural, thermal and optical characteristics, J. Mater. Chem. C, 8, 1591, 10.1039/C9TC05711K

Flengas, 1960

Mui, 1962, The formation and the thermodynamic properties of K2TiCl6 in KCl-LiCl melts, Can. J. Chem., 40, 997, 10.1139/v62-149

Bland, 1961, 39, 941

Ju, 2018, Earthabundant nontoxic titanium (IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications, ACS Energy Lett, 3, 297, 10.1021/acsenergylett.7b01167

Kumar, 2016, Crystal structure, stability, and optoelectronic properties of the organic-inorganic wide-band-gap perovskite CH3NH3Bai3: candidate for transparent conductor applications, Phys. Rev. B, 94, 180105(R), 10.1103/PhysRevB.94.180105

Kumagai, 1997

Blaha, 2001

Blaha, 1990, Full potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun., 59, 339, 10.1016/0010-4655(90)90187-6

Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007

Fuchizaki, 2006, Murnaghan's equation of state revisited, J. Phys. Soc. Jpn., 75, 10.1143/JPSJ.75.034601

Tran, 2009, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential, Phys. Rev. Lett., 102, 226401, 10.1103/PhysRevLett.102.226401

Koller, 2011, Merits and limits of the modified Becke-Johnson exchange potential, Phys. Rev. B, 83, 195134, 10.1103/PhysRevB.83.195134

Jiang, 2016, Pressure-dependent polymorphism and band-gap tuning of methyl ammonium lead iodide perovskites, Angew. Chem. Int. Ed., 55, 6540, 10.1002/anie.201601788

Abbas, 2020, Chem. Phys., 538, 1109022, 10.1016/j.chemphys.2020.110902

Majid, 2020, Exploration of magnesium based MgX2O4 (X = Rh, Bi) spinels for thermoelectric applications using density functional theory (DFT), J. Mat. Res. Tech., 9, 6135, 10.1016/j.jmrt.2020.04.016

Fedorovskiy, 2019, The role of Goldschmidt's tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range, Small Method, 1, 1900426

Mahmood, 2020, Probing of mechanical, optical, and thermoelectric characteristics of double perovskites Cs2GeCl/Br6 by DFT method, Mater. Sci. Semicond. Process., 112, 105009, 10.1016/j.mssp.2020.105009

Jong, 2019, First-Principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites, Inorg. Chem., 58, 4134, 10.1021/acs.inorgchem.8b03095

Du, 2020, Insights on electronic structures, elastic features and optical properties of mixed-valence double perovskites Cs2Au2X6 (X=F, Cl, Br, I), Phys. Lett., 384, 126169, 10.1016/j.physleta.2019.126169

Penn, 1962, Wave-number-dependent dielectric function of semiconductors, Phys. Rev., 128, 2093, 10.1103/PhysRev.128.2093

Sajjad, 2019, Copper thiocyanate and copper selenocyanate hole transport layers: determination of band offsets with silicon and hybrid perovskites from first principles, Phys. Status Solidi–RRL, 13, 1900328, 10.1002/pssr.201900328

Sajjad, 2019, Ultralow lattice thermal conductivity and thermoelectric properties of monolayer Tl2O, ACS Appl. Energy Mater., 2, 3004, 10.1021/acsaem.9b00249

Sajjad, 2020, Bulk, and monolayer bismuth oxyiodide (BiOI): excellent high temperature p-type thermoelectric materials, AIP Adv., 10, 10.1063/1.5133711

Pazoki, 2018, Metal replacement in perovskite solar cell materials: chemical bonding effects and optoelectronic properties, Sustain. Energy Fuel., 2, 1430, 10.1039/C8SE00143J

Mattesini, 2009, Elastic properties and electro structural correlations in ternary scandium-based cubic inverse perovskites: a first-principles study, Phys. Rev. B, 79, 125122, 10.1103/PhysRevB.79.125122