A new higher order chain rule and Gevrey class

T. Yamanaka1
1Department of Mathematics College of Science and Technology, Nihon University, Tokyo 101, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abraham, R.-Robbin, J.: Transversal mappings and flows. W. A. Benjamin, Inc., New York 1967.

Dieudonné, P.- Foundations of Modern Analysis. Academic Press, New York 1960.

Duchateau, P.-Tréves, F.: An abstract Cauchy-Kovalevska Theorem in scales of Gevrey classes. Symposia Math., vol.7 (1971), pp. 135?163, Academic Press.

Faa'di Bruno, F.: Sullo sviluppo delle funzioni. Annali di Scienze Matematiche e Fisiche di Tortolini, 6 (1855), 479?480.

Kajitani, K.: Non-linear Leray-Volevich systems and Gevrey class. Comm. in Partial Differential Equations, 6 (1981), 1137?1162.

Koike, M.: An abstract nonlinear Cauchy problem with a vector valued time variable. Funkcialaj Ekvcioj 32 (1989), 1?22.

Komatsu, H.: The implicit function theorem for ultra-differentiable mappings. Proc. Japan Acad., Ser. A, 55 (1979), 69?72.

Lusternik, L. A.-Sobolev, V. J.: Elements of Functional Analysis. Hindustan Publ. Co., Delhi, 1961.

Perron, O.: Über eine Formel des Herrn Schwatt. Math. Zeitschr. 31 (1930), 159?160.

Persson, J.: New proofs and generalizations of two theorems by Lednev for Goursat problems. Math. Annalen 178 (1968), 184?208.

Persson, J.: Quasianalytic classes, Holmgren's uniqueness theorem, Hamilton-Jacobi equations and the inverse function theorem. ?Current topics in partial differential equations? (ed. Ohya et al.), pp. 27?53, Kinokuniya, Tokyo, 1986.