A new heteroskedasticity-consistent covariance matrix estimator for the linear regression model

Francisco Cribari–Neto1, Wilton Bernardino da Silva1
1Departamento de Estatística, Universidade Federal de Pernambuco, Recife, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Angrist, J.D., Pischke, J.-S.: Mostly Harmless Econometrics: An Empricist’s Companion. Princeton University Press, Princeton (2009)

Chesher, A., Jewitt, I.: The bias of a heteroskedasticity consistent covariance matrix estimator. Econometrica 55, 1217–1222 (1987)

Cribari-Neto, F.: Asymptotic inference under heteroskedasticity of unknown form. Comput. Stat. Data Anal. 45, 215–233 (2004)

Cribari-Neto, F., Ferrari, S.L.P., Cordeiro, G.M.: Improved heteroskedasticity-consistent covariance matrix estimators. Biometrika 87, 907–918 (2000)

Cribari-Neto, F., Galvão, N.M.S.: A class of improved heteroskedasticity-consistent covariance matrix estimators. Commun. Stat. Theory Methods 32, 1951–1980 (2003)

Cribari-Neto, F., Lima, M.G.A.: Heteroskedasticity-consistent interval estimators. J. Stat. Comput. Simul. 79, 787–803 (2009)

Cribari-Neto, F., Lima, M.G.A.: Approximate inference in heteroskedastic regressions: a numerical evaluation. J. Appl. Stat. 37, 591–615 (2010)

Cribari-Neto, F., Zarkos, S.G.: Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing. Econom. Rev. 18, 211–228 (1999)

Cribari-Neto, F., Zarkos, S.G.: Heteroskedasticity-consistent covariance matrix estimation: White’s estimator and the bootstrap. J. Stat. Comput. Simul. 68, 391–411 (2001)

Cribari-Neto, F., Zarkos, S.G.: Leverage-adjusted heteroskedastic bootstrap methods. J. Stat. Comput. Simul. 74, 215–232 (2004)

Cribari-Neto, F., Souza, T.C., Vasconcellos, K.L.P.: Inference under heteroskedasticity and leveraged data. Commun. Stat. Theory Methods 36, 1877–1888 (2007). Errata: 37, 3329–3330 (2008)

Davidson, R., MacKinnon, J.G.: Estimation and Inference in Econometrics. Oxford University Press, New York (1993)

Doornik, J.A.: An Object-oriented Matrix Programming Language—Ox 4. Timberlake Consultants and Oxford, London (2006). http://www.doornik.com

Eicker, F.: Asymptotic normality and consistency of the least squares estimator for families of linear regressions. Ann. Math. Stat. 34, 447–456 (1963)

Hinkley, D.V.: Jackknifing in unbalanced situations. Technometrics 19, 285–292 (1977)

Horn, S.D., Horn, R.A., Duncan, D.B.: Estimating heteroskedastic variances in linear models. J. Am. Stat. Assoc. 70, 380–385 (1975)

Huber, P.J.: The behavior of maximum likelihood estimation under nonstandard conditions. In: LeCam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley (1967)

Imhof, J.P.: Computing the distribution of quadratic forms in normal variables. Biometrika 48, 419–426 (1961)

Long, J.S., Ervin, L.H.: Using heteroscedasticity-consistent standard errors in the linear regression model. Am. Stat. 54, 217–224 (2000)

MacKinnon, J.G., White, H.: Some heteroskedasticity-consistent covariance matrix estimators with improved finite-sample properties. J. Econom. 29, 305–325 (1985)

White, H.: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–838 (1980)