A new heteroskedasticity-consistent covariance matrix estimator for the linear regression model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Angrist, J.D., Pischke, J.-S.: Mostly Harmless Econometrics: An Empricist’s Companion. Princeton University Press, Princeton (2009)
Chesher, A., Jewitt, I.: The bias of a heteroskedasticity consistent covariance matrix estimator. Econometrica 55, 1217–1222 (1987)
Cribari-Neto, F.: Asymptotic inference under heteroskedasticity of unknown form. Comput. Stat. Data Anal. 45, 215–233 (2004)
Cribari-Neto, F., Ferrari, S.L.P., Cordeiro, G.M.: Improved heteroskedasticity-consistent covariance matrix estimators. Biometrika 87, 907–918 (2000)
Cribari-Neto, F., Galvão, N.M.S.: A class of improved heteroskedasticity-consistent covariance matrix estimators. Commun. Stat. Theory Methods 32, 1951–1980 (2003)
Cribari-Neto, F., Lima, M.G.A.: Heteroskedasticity-consistent interval estimators. J. Stat. Comput. Simul. 79, 787–803 (2009)
Cribari-Neto, F., Lima, M.G.A.: Approximate inference in heteroskedastic regressions: a numerical evaluation. J. Appl. Stat. 37, 591–615 (2010)
Cribari-Neto, F., Zarkos, S.G.: Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing. Econom. Rev. 18, 211–228 (1999)
Cribari-Neto, F., Zarkos, S.G.: Heteroskedasticity-consistent covariance matrix estimation: White’s estimator and the bootstrap. J. Stat. Comput. Simul. 68, 391–411 (2001)
Cribari-Neto, F., Zarkos, S.G.: Leverage-adjusted heteroskedastic bootstrap methods. J. Stat. Comput. Simul. 74, 215–232 (2004)
Cribari-Neto, F., Souza, T.C., Vasconcellos, K.L.P.: Inference under heteroskedasticity and leveraged data. Commun. Stat. Theory Methods 36, 1877–1888 (2007). Errata: 37, 3329–3330 (2008)
Davidson, R., MacKinnon, J.G.: Estimation and Inference in Econometrics. Oxford University Press, New York (1993)
Doornik, J.A.: An Object-oriented Matrix Programming Language—Ox 4. Timberlake Consultants and Oxford, London (2006). http://www.doornik.com
Eicker, F.: Asymptotic normality and consistency of the least squares estimator for families of linear regressions. Ann. Math. Stat. 34, 447–456 (1963)
Horn, S.D., Horn, R.A., Duncan, D.B.: Estimating heteroskedastic variances in linear models. J. Am. Stat. Assoc. 70, 380–385 (1975)
Huber, P.J.: The behavior of maximum likelihood estimation under nonstandard conditions. In: LeCam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley (1967)
Imhof, J.P.: Computing the distribution of quadratic forms in normal variables. Biometrika 48, 419–426 (1961)
Long, J.S., Ervin, L.H.: Using heteroscedasticity-consistent standard errors in the linear regression model. Am. Stat. 54, 217–224 (2000)
MacKinnon, J.G., White, H.: Some heteroskedasticity-consistent covariance matrix estimators with improved finite-sample properties. J. Econom. 29, 305–325 (1985)