A new friendly method of computing prolate spheroidal wave functions and wavelets
Tài liệu tham khảo
Flammer, 1957
S. Hanish, A.L. Baier, R.V. Van Buren, B.J. King, Tables of Radial Spheroidal Wave Functions, volume 1: Prolate, m=0, Tech. Rep. NRL 7088, Naval Research Laboratory, Washington, DC, 1970 (available through NTIS, AN: AD723836XAB)
Khare, 2003, Sampling theory approach to prolate spheroidal wave functions, J. Phys. A Math. Gen., 36, 10011, 10.1088/0305-4470/36/39/303
Lozier, 1993, Numerical evaluation of special functions, vol. 48, 79
Papoulis, 1977
Shannon, 1949, Communication in the presence of noise, Proc. IRE, 37, 10, 10.1109/JRPROC.1949.232969
Slepian, 1961, Prolate spheroidal wave functions, Fourier analysis and uncertainty, I, Bell Syst. Techn. J., 40, 43, 10.1002/j.1538-7305.1961.tb03976.x
Slepian, 1983, Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., 25, 379, 10.1137/1025078
Stakgold, 1979
A.L. Van Buren, A Fortran Computer Program for Calculating the Linear Prolate Functions, Tech. Rep. NRL 7994, Naval Research Laboratory, Washington, DC, 1976 (available through NTIS, AN: ADA0252106XAB)
Volkmer, 2004, Spheroidal wave functions
Walter, 2005, Prolate spheroidal wavelets: Differentiation, translation, and convolution made easy, J. Fourier Anal. Appl., 11, 73, 10.1007/s00041-004-3083-9
Walter, 2004, Wavelets based on prolate spheroidal wave functions, J. Fourier Anal. Appl., 10, 1, 10.1007/s00041-004-8001-7
Zhang, 1996