A new friendly method of computing prolate spheroidal wave functions and wavelets

Applied and Computational Harmonic Analysis - Tập 19 - Trang 432-443 - 2005
G. Walter1, T. Soleski1
1Department of Mathematical Sciences, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201-0413, USA

Tài liệu tham khảo

Flammer, 1957 S. Hanish, A.L. Baier, R.V. Van Buren, B.J. King, Tables of Radial Spheroidal Wave Functions, volume 1: Prolate, m=0, Tech. Rep. NRL 7088, Naval Research Laboratory, Washington, DC, 1970 (available through NTIS, AN: AD723836XAB) Khare, 2003, Sampling theory approach to prolate spheroidal wave functions, J. Phys. A Math. Gen., 36, 10011, 10.1088/0305-4470/36/39/303 Lozier, 1993, Numerical evaluation of special functions, vol. 48, 79 Papoulis, 1977 Shannon, 1949, Communication in the presence of noise, Proc. IRE, 37, 10, 10.1109/JRPROC.1949.232969 Slepian, 1961, Prolate spheroidal wave functions, Fourier analysis and uncertainty, I, Bell Syst. Techn. J., 40, 43, 10.1002/j.1538-7305.1961.tb03976.x Slepian, 1983, Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., 25, 379, 10.1137/1025078 Stakgold, 1979 A.L. Van Buren, A Fortran Computer Program for Calculating the Linear Prolate Functions, Tech. Rep. NRL 7994, Naval Research Laboratory, Washington, DC, 1976 (available through NTIS, AN: ADA0252106XAB) Volkmer, 2004, Spheroidal wave functions Walter, 2005, Prolate spheroidal wavelets: Differentiation, translation, and convolution made easy, J. Fourier Anal. Appl., 11, 73, 10.1007/s00041-004-3083-9 Walter, 2004, Wavelets based on prolate spheroidal wave functions, J. Fourier Anal. Appl., 10, 1, 10.1007/s00041-004-8001-7 Zhang, 1996