A new convolutive source separation approach for independent/dependent source components

Digital Signal Processing - Tập 100 - Trang 102701 - 2020
N. Mamouni1,2, A. Keziou1, H. Fenniri3, A. Ghazdali4, A. Hakim2
1LMR - UMR 9008 CNRS, Université de Reims Champagne-Ardenne, France
2LAMAI, FST, Université Cadi-Ayyad, Maroc
3CReSTIC, Université de Reims Champagne-Ardenne, France
4LIPIM, ENSA Khouribga, Université Sultan Moulay Slimane, Maroc

Tài liệu tham khảo

Hansen, 2003, Ica if fmri based on a convolutive mixture model Anemüller, 2003, Complex independent component analysis of frequency-domain electroencephalographic data, Neural Netw., 16, 1311, 10.1016/j.neunet.2003.08.003 Cruces-Alvarez, 2000, An iterative inversion approach to blind source separation, IEEE Trans. Neural Netw., 11, 1423, 10.1109/72.883471 Mansour, 2006, Blind separation of underwater acoustic signals, 181 Haykin, 2005, The cocktail party problem, Neural Comput., 17, 1875, 10.1162/0899766054322964 Nuzillard, 2000, Blind source separation and analysis of multispectral astronomical images, Astron. Astrophys. Suppl. Ser., 147, 129, 10.1051/aas:2000292 Dyrholm, 2006, Model structure selection in convolutive mixtures, 74 Babaie-Zadeh, 2005, A general approach for mutual information minimization and its application to blind source separation, Signal Process., 85, 975, 10.1016/j.sigpro.2004.11.021 Castella, 2011, New kurtosis optimization schemes for miso equalization, IEEE Trans. Signal Process., 60, 1319, 10.1109/TSP.2011.2177828 Yellin, 1994, Criteria for multichannel signal separation, IEEE Trans. Signal Process., 42, 2158, 10.1109/78.301850 Thi, 1995, Blind source separation for convolutive mixtures, Signal Process., 45, 209, 10.1016/0165-1684(95)00052-F Bell, 1995, An information-maximization approach to blind separation and blind deconvolution, Neural Comput., 7, 1129, 10.1162/neco.1995.7.6.1129 Comon, 1994, Independent component analysis, a new concept?, Signal Process., 36, 287, 10.1016/0165-1684(94)90029-9 Hyvärinen, 2000, Independent component analysis: algorithms and applications, Neural Netw., 13, 411, 10.1016/S0893-6080(00)00026-5 Saito, 2015, Convolutive blind source separation using an iterative least-squares algorithm for non-orthogonal approximate joint diagonalization, IEEE/ACM Trans. Audio Speech Lang. Process., 23, 2434, 10.1109/TASLP.2015.2485663 Smaragdis, 1998, Blind separation of convolved mixtures in the frequency domain, Neurocomputing, 22, 21, 10.1016/S0925-2312(98)00047-2 Makino, 2005, Blind source separation of convolutive mixtures of speech in frequency domain, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 88, 1640, 10.1093/ietfec/e88-a.7.1640 Hyvärinen, 2001, Topographic independent component analysis, Neural Comput., 13, 1527, 10.1162/089976601750264992 Hyvärinen, 2004, Blind separation of sources that have spatiotemporal variance dependencies, Signal Process., 84, 247, 10.1016/j.sigpro.2003.10.010 Caiafa, 2006, Separation of statistically dependent sources using an l2-distance non-Gaussianity measure, Signal Process., 86, 3404, 10.1016/j.sigpro.2006.02.032 Caiafa, 2012, On the conditions for valid objective functions in blind separation of independent and dependent sources, EURASIP J. Adv. Signal Process., 2012, 255, 10.1186/1687-6180-2012-255 Theis, 2008, A robust model for spatiotemporal dependencies, Neurocomputing, 71, 2209, 10.1016/j.neucom.2007.06.012 Theis, 2005, Blind signal separation into groups of dependent signals using joint block diagonalization, 5878 Boudjellal, 2014, Separation of dependent autoregressive sources using joint matrix diagonalization, IEEE Signal Process. Lett., 22, 1180, 10.1109/LSP.2014.2380312 Caiafa, 2006, A minimax entropy method for blind separation of dependent components in astrophysical images, 81 Caiafa, 2013, Using generic order moments for separation of dependent sources with linear conditional expectations, 1 Kuruoglu, 2013, Dependent component analysis, EURASIP J. Adv. Signal Process., 185 Bedini, 2004, Separation of dependent sources in astrophysical radiation maps using second order statistics Castella, 2013, Separation of instantaneous mixtures of a particular set of dependent sources using classical ica methods, EURASIP J. Adv. Signal Process., 2013, 62, 10.1186/1687-6180-2013-62 Kuruoglu, 2010, Dependent component analysis for cosmology: a case study, 538 Xiang, 2015 Erdogan, 2013, A class of bounded component analysis algorithms for the separation of both independent and dependent sources, IEEE Trans. Signal Process., 61, 5730, 10.1109/TSP.2013.2280115 Inan, 2015, Convolutive bounded component analysis algorithms for independent and dependent source separation, IEEE Trans. Neural Netw. Learn. Syst., 26, 697, 10.1109/TNNLS.2014.2320817 Inan, 2015, A convolutive bounded component analysis framework for potentially nonstationary independent and/or dependent sources, IEEE Trans. Signal Process., 63, 18, 10.1109/TSP.2014.2367472 Keziou, 2014, New blind source separation method of independent/dependent sources, Signal Process., 104, 319, 10.1016/j.sigpro.2014.04.017 Ghazdali, 2017, Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas, Signal Process., 131, 502, 10.1016/j.sigpro.2016.09.006 Simon, 1999 Sklar, 1959, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Stat. Univ. Paris, 8, 229 Nelsen, 2007 Joe, 1997 Babaie-Zadeh, 2001, Separating convolutive mixtures by mutual information minimization, 834 Silverman, 1986, Density Estimation for Statistics and Data Analysis, 10.1007/978-1-4899-3324-9 Chen, 2005, Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection, Can. J. Stat., 33, 389, 10.1002/cjs.5540330306 Genest, 1995, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, 82, 543, 10.1093/biomet/82.3.543 Tsukahara, 2005, Semiparametric estimation in copula models, Can. J. Stat., 33, 357, 10.1002/cjs.5540330304 Bouzebda, 2010, New estimates and tests of independence in semiparametric copula models, Kybernetika, 46, 178 Boyd, 2003, Subgradient methods, lecture notes of EE392o, 2004