A new cohesive crack tip symplectic analytical singular element involving plastic zone length for fatigue crack growth prediction under variable amplitude cyclic loading

European Journal of Mechanics - A/Solids - Tập 65 - Trang 79-90 - 2017
Xiaofei Hu1, Tinh Quoc Bui2,3, Jining Wang4, Weian Yao1, Hoang Lan Ton-That5, I.V. Singh6, Satoyuki Tanaka7
1State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
2Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-W8-22, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
3Institute for Research and Development, Duy Tan University, Da Nang City, Vietnam
4Beijing Institute of Structure and Environment Engineering, Beijing, China
5Department of Civil Engineering, HCMC University of Architecture, Vietnam
6Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
7Graduate School of Engineering, Hiroshima University, 4-1, Kagamiyama 1-chome, Higashi-Hiroshima 739-8527, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

ABAQUS Analysis User’s Manual. Dassault Systemes Simulia Corp, Providence, RI, USA. 2012 .

Barenblatt, 1962, The mathematical theory of equilibrium cracks in brittle fracture, Advan Appl. Mech., 7, 55, 10.1016/S0065-2156(08)70121-2

Benoit, 2012, Modeling delamination growth in composites under fatigue loadings of varying amplitudes, Compos. Part B, 43, 533, 10.1016/j.compositesb.2011.08.020

Bhattacharya, 2013, Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM, Comput. Mech., 52, 799, 10.1007/s00466-013-0845-8

De Borst, 2003, Numerical aspects of cohesive-zone models, Eng. Fract. Mech., 70, 1743, 10.1016/S0013-7944(03)00122-X

Dugdale, 1960, Yielding of steel sheets containing slits, J. Mech. Phy Solids, 8, 100, 10.1016/0022-5096(60)90013-2

Elices, 2002, The cohesive zone model: advantages, limitations and challenges, Eng. Fract. Mech., 69, 137, 10.1016/S0013-7944(01)00083-2

Guo, 1995, Elasto-plastic three-dimensional crack border field–III, Fract. Param. Eng. Fract. Mech., 51, 51, 10.1016/0013-7944(94)00215-4

Guo, 1999, Three-dimensional analyses of plastic constraint for through-thickness cracked bodies, Eng. Fract. Mech., 62, 383, 10.1016/S0013-7944(98)00102-7

Holl, 2014, 3D multiscale crack propagation using the XFEM applied to a gas turbine blade, Comput. Mech., 53, 173, 10.1007/s00466-013-0900-5

Hu, 2013, A new enriched finite element for fatigue crack growth, Int. J. Fatigue, 48, 247, 10.1016/j.ijfatigue.2012.11.003

Hu, 2016, Integrated XFEM-CE analysis of delamination migration in multi-directional composite laminates, Compos. Part A, 90, 161, 10.1016/j.compositesa.2016.07.007

Hu, 2016, A size independent enriched finite element for the modeling of bimaterial interface cracks, Comput. Struct., 172, 1, 10.1016/j.compstruc.2016.05.005

Huang, 2007, Improved modeling of the effect of R-ratio on crack growth rate, Int. J. Fatigue, 29, 591, 10.1016/j.ijfatigue.2006.07.014

Huang, 2008, An engineering model of fatigue crack growth under variable amplitude loading, Int. J. Fatigue, 30, 2, 10.1016/j.ijfatigue.2007.03.004

Jha, 2012, A cohesive model for fatigue failure in complex stress-states, Int. J. Fatigue, 36, 155, 10.1016/j.ijfatigue.2011.07.015

Karihaloo, 2008, Asymptotic fields at the tip of a cohesive crack, Int. J. Fract., 150, 55, 10.1007/s10704-008-9218-2

Li, 2015, Assessment of low cycle fatigue crack growth under mixed-mode loading conditions by using a cohesive zone model, Int. J. Fatigue, 75, 39, 10.1016/j.ijfatigue.2015.01.008

Moes, 2002, Extended finite element method for cohesive crack growth, Eng. Fract. Mech., 69, 813, 10.1016/S0013-7944(01)00128-X

Needleman, 1987, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech-ASME, 54, 525, 10.1115/1.3173064

Nojavan, 2016, A two-dimensional in situ fatigue cohesive zone model for crack propagation in composites under cyclic loading, Int. J. Fatigue, 82, 449, 10.1016/j.ijfatigue.2015.08.029

Porter, 1972, Method of analysis and prediction for variable amplitude fatigue crack growth, Eng. Fract. Mech., 4, 717, 10.1016/0013-7944(72)90011-2

Roth, 2014, Simulation of fatigue crack growth with a cyclic cohesive zone model, Int J Fract, 188, 23, 10.1007/s10704-014-9942-8

Singh, 2012, The numerical simulation of fatigue crack growth using extended finite element method, Int. J. Fatigue, 36, 109, 10.1016/j.ijfatigue.2011.08.010

Taheri, 2003, Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loading, Mar. Struct., 16, 69, 10.1016/S0951-8339(02)00004-7

Voorwald, 1991, Modeling of fatigue crack growth following overloads, Int. J. Fatigue, 13, 423, 10.1016/0142-1123(91)90600-4

Wheeler, 1972, Spectrum loading and crack growth, J. Basic Engng, Trans. ASME, Ser. D., 94, 181, 10.1115/1.3425362

Willenborg, 1971

Yao, 2011, A novel singular finite element of mixed-mode crack problems with arbitrary crack tractions, Mech. Res. Communi, 38, 170, 10.1016/j.mechrescom.2011.03.009

Yao, 2012, A novel singular finite element on mixed-mode dugdale model based crack, J. Eng. Mater Tech., 134, 021003, 10.1115/1.4006181

Yao, 2012, A singular finite element on the mixed-mode bimaterial interfacial cracks, Int. J. Comput. Methods Eng. Sci. Mech., 13, 219, 10.1080/15502287.2011.650345

Zhang, 2015, A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures, Eng. Comput., 2, 473, 10.1108/EC-08-2013-0203

Zhang, 2003, Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions, Int. J. Solids Struct., 40, 493, 10.1016/S0020-7683(02)00585-1