A new class of term orders for elimination
Tài liệu tham khảo
Amrhein, 1998, The fractal walk
Amrhein, 1996, Walking faster
Buchberger, B., 1965. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal, Ph.D. Thesis, Institute of Mathematics, Univ. Innsbruck, Innsbruck, Austria (in German)
Buchberger, 1985, Groebner Bases: An algorithmic method in polynomial ideal theory, 184
Caniglia, 1991, Equations for the projective closure and effective nullstellensatz, Discrete Applied Mathematics, 33, 11, 10.1016/0166-218X(91)90105-6
Chen, 2003, Revisiting the μ-basis of a rational ruled surface, Journal of Symbolic Computation, 36, 699, 10.1016/S0747-7171(03)00064-6
Chen, 2001, The mu-basis of a rational ruled surface, Computer Aided Geometric Design, 10.1016/S0167-8396(01)00012-7
Collart, 1997, Converting bases with the Groebner walk, Journal of Symbolic Computation, 24, 465, 10.1006/jsco.1996.0145
Cox, 1998, The moving line ideal basis of planar rational curves, Computer Aided Geometric Design, 10.1016/S0167-8396(98)00014-4
Crow, 1987, The origins of the teapot, IEEE Computer Graphics & Applications, 7, 8, 10.1109/MCG.1987.277023
Dubé, 1990, The structure of polynomial ideals and Groebner bases, SIAM Journal on Computing, 19, 750, 10.1137/0219053
Kalkbrener, M., 1990. Implicitization of rational curves and surfaces. In: Lect. Notes in Comp. Sci., vol. 508, AAECC-8, Tokyo, Japan
Manocha, 1992, Algorithm for implicitizing rational parametric surfaces, Computer Aided Geometric Design, 9, 25, 10.1016/0167-8396(92)90051-P
Mora, 1988, The Groebner fan of an ideal, Journal of Symbolic Computation, 6, 183, 10.1016/S0747-7171(88)80042-7
Robbiano, 1985, Term orderings on the polynomial ring, vol. 204, 513
Salmon, 1964
Sederberg, 1995, Implicitization using moving curves and surfaces
Sederberg, 1984, Implicit representation of parametric curves and surfaces, Computer Vison, Graphics and Image Processing, 28, 72, 10.1016/0734-189X(84)90140-3
Sylvester, J., 1904–1912. The collected mathematical papers of James Joseph Sylvester. Cambridge University Press, Cambridge, England. Republished in 2006
Tran, 2000, A fast algorithm for Groebner basis conversion and its applications, Journal of Symbolic Computation, 30, 451, 10.1006/jsco.1999.0416
Traverso, 1996, Hilbert functions and the Buchberger algorithm, Journal of Symbolic Computation, 22, 355, 10.1006/jsco.1996.0056
Winkler, 1996, Polynomial Algorithms in Computer Algebra, 10.1007/978-3-7091-6571-3