A new automated method for the determination of the Total Antioxidant Capacity (TAC) of human plasma, based on the crocin bleaching assay

BMC Clinical Pathology - Tập 2 - Trang 1-16 - 2002
Marilena Kampa1, Anastasia Nistikaki1, Vassilios Tsaousis2, Niki Maliaraki3, George Notas4, Elias Castanas1
1Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
2Medicon Hellas S.A., Gerakas, Greece
3Clinical Chemistry University of Crete, School of Medicine, Heraklion, Greece
4Gastroenterology, University of Crete, School of Medicine, Heraklion, Greece

Tóm tắt

Antioxidant molecules, which scavenge free radical species to prevent or delay oxidative damage of important macromolecules, membrane lipids and lipoproteins, are prevalent in plasma and other biological fluids. Among them, bilirubin, uric acid and protein thiols are the major endogenous antioxidants, while vitamins C and E, as well as a number of food-derived (poly)aromatic substances, belonging to stilbens, flavonoids and phenolic acids, are the main classes of nutritional antioxidants. Assays for total antioxidant capacity in plasma differ in their type of oxidation source, target and measurement used to detect the oxidized product. In the present work we present an automated assay for the estimation of blood total antioxidant capacity (TAC assay), based on the crocin bleaching (oxidation) method. This method was adapted on a modern autoanalyzer, was linear over a wide range of values (0–3 mmol/L), and performed using an end point measurement. The TAC method presented a linear correlation with another automated commercial Total Antioxidant Status (TAS) test. Detection of the interference of different metabolites revealed a significant participation of TAC from uric acid, bilirubin, albumin, a minor interference from ascorbic acid, and no interference from hemoglobin. TAC was not modified by two freeze/thawing cycles, and was stable in samples stored at room temperature for 4 hours. K-EDTA and heparin were the best anticoagulants, while citrate decreased TAC by 20%. Reference values derived from samples of normal blood donors was 1.175 ± 0.007 mmol/L (mean ± SEM), while a diet rich in antioxidants more than doubled this value. The proposed TAC assay, is fully automated, stable and reliable, and could be of value in the estimation of the AC of plasma. It is further proposed to calculate the antioxidant capacity of plasma after a subtraction of all interference deriving from endogenous and/or exogenous metabolites. The antioxidant capacity of plasma thus calculated can be used as a useful indicator of the antioxidant value of foods and beverages in the daily diet.

Tài liệu tham khảo

Duthie GG: Determination of activity of antioxidants in human subjects. Proc Nutr Soc. 1999, 58: 1015-24. Wayner DD, Burton GW, Ingold KU, Barclay LR, Locke SJ: The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta. 1987, 924: 408-19. 10.1016/0304-4165(87)90155-3. Ceriello A, Bortolotti N, Crescentini A, Motz E, Lizzio S, Russo A, Ezsol Z, Tonutti L, Taboga C: Antioxidant defenses are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest. 1998, 28: 329-33. 10.1046/j.1365-2362.1998.00295.x. Frei B, Stocker R, Ames BN: Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci U S A. 1988, 85: 9748-52. Ryan M, Grayson L, Clarke DJ: The total antioxidant capacity of human serum measured using enhanced chemiluminescence is almost completely accounted for by urate. Ann Clin Biochem. 1997, 34: 688-9. Prior RL, Cao G: In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med. 1999, 27: 1173-81. 10.1016/S0891-5849(99)00203-8. Rice-Evans C, Miller N: Measurement of the antioxidant status of dietary constituents, low density lipoproteins and plasma. Prostaglandins Leukot Essent Fatty Acids. 1997, 57: 499-505. 10.1016/S0952-3278(97)90435-X. Wayner DD, Burton GW, Ingold KU, Locke S: Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett. 1985, 187: 33-7. 10.1016/0014-5793(85)81208-4. Aejmelaeus R, Ketela TM, Pirttila T, Hervonen A, Alho H: Unidentified antioxidant defenses of human plasma in immobilized patients: a possible relation to basic metabolic rate. Free Radic Res. 1997, 26: 335-41. Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A: A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic Biol Med. 1995, 18: 29-36. 10.1016/0891-5849(94)00102-P. DeLange RJ, Glazer AN: Phycoerythrin fluorescence-based assay for peroxy radicals: a screen for biologically relevant protective agents. Anal Biochem. 1989, 177: 300-6. Glazer AN: Phycoerythrin fluorescence-based assay for reactice oxygen species. Meth Enzymol. 1990, 186: 161-168. 10.1016/0076-6879(90)86106-6. Abella A, Messaoudi C, Laurent D, Marot D, Chalas J, Breux J, Claise C, Lindenbaum A: A method for simultaneous determination of plasma and erythrocyte antioxidant status. Evaluation of the antioxidant activity of vitamin E in healthy volunteers. Br J Clin Pharmacol. 1996, 42: 737-41. 10.1046/j.1365-2125.1996.00490.x. Benzie IFF, Strain JJ: The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996, 239: 70-6. 10.1006/abio.1996.0292. Dasgupta A, Malhotra D, Levy H, Marcadis D, Blackwell W, Johnston D: Decreased total antioxidant capacity but normal lipid hydroperoxide concentrations in sera of critically ill patients. Life Sci. 1997, 60: 335-40. 10.1016/S0024-3205(96)00634-0. Dasgupta A, Zdunek T: In vitro lipid peroxidation of human serum catalyzed by cupric ion: antioxidant rather than prooxidant role of ascorbate. Life Sci. 1992, 50: 875-82. 10.1016/0024-3205(92)90206-5. Tubaro F, Ghiselli A, Rapuzzi P, Maiorino M, Ursini F: Analysis of plasma antioxidant capacity by competition kinetics. Free Radic Biol Med. 1998, 24: 1228-34. 10.1016/S0891-5849(97)00436-X. Lussignoli S, Fraccaroli M, Andrioli G, Brocco G, Bellavite P: A microplate-based colorimetric assay of the total peroxyl radical trapping capability of human plasma. Anal Biochem. 1999, 269: 38-44. 10.1006/abio.1999.4010. Jorgensen LV, Andersen HJ, Skibsted LH: Kinetics of reduction of hypervalent iron in myoglobin by crocin in aqueous solution. Free Radic Res. 1997, 27: 73-87. Papadopoulos G, Boskou D: Antioxidant effect of natural phenols on olive oil. J. Am. Oil Chem. Soc. 1991, 68: 669-671. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner AA: A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in neonates. Clin Sci. 1993, 84: 407-412. Rice-Evans C, Miller NJ: Total antioxidant status in plasma and body fluids. Meth Enzymol. 1994, 234: 279-293. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999, 26: 1231-1237. 10.1016/S0891-5849(98)00315-3. Gutteridge JM: Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact. 1994, 91: 133-40. 10.1016/0009-2797(94)90033-7. Halliwell B: Antioxidants and human disease: a general introduction. Nutr Rev. 1997, 55: S44-9. Halliwell B: Free radicals and antioxidants: a personal view. Nutr Rev. 1994, 52: 253-65. Halliwell B, Gutteridge JM: The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990, 280: 1-8. Halliwell B, Gutteridge JM: The definition and measurement of antioxidants in biological systems. Free Radic Biol Med. 1995, 18: 125-6. 10.1016/0891-5849(95)91457-3. McLemore JL, Beeley P, Thorton K, Morrisroe K, Blackwell W, Dasgupta A: Rapid automated determination of lipid hydroperoxide concentrations and total antioxidant status of serum samples from patients infected with HIV: elevated lipid hydroperoxide concentrations and depleted total antioxidant capacity of serum samples. Am J Clin Pathol. 1998, 109: 268-73. Greenspan HC, Aruoma OI: Oxidative stress and apoptosis in HIV infection: a role for plant-derived metabolites with synergistic antioxidant activity. Immunol Today. 1994, 15: 209-13. 10.1016/0167-5699(94)90245-3. Kok AB: Ascorbate availability and neurodegeneration in amyotrophic lateral sclerosis. Med Hypotheses. 1997, 48: 281-96. Baynes JW, Thorpe SR: Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999, 48: 1-9. Baynes JW: Role of oxidative stress in development of complications in diabetes. Diabetes. 1991, 40: 405-12. Tsai EC, Hirsch IB, Brunzell JD, Chait A: Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes. 1994, 43: 1010-4. Riemersma RA, Carruthers KF, Elton RA, Fox KA: Plasma ascorbic acid and risk of heart disease and cancer. Lancet. 2001, 357: 2136-7. 10.1016/S0140-6736(00)05208-9. Riemersma RA, Wood DA, Macintyre CC, Elton RA, Gey KF, Oliver MF: Anti-oxidants and pro-oxidants in coronary heart disease. Lancet. 1991, 337: 677-10.1016/0140-6736(91)92496-O. Riemersma RA, Wood DA, Macintyre CC, Elton RA, Gey KF, Oliver MF: Risk of angina pectoris and plasma concentrations of vitamins A, C, and E and carotene. Lancet. 1991, 337: 1-5. 10.1016/0140-6736(91)93327-6. Riemersma RA: Coronary heart disease and vitamin E. Lancet. 1996, 347: 776-7. 10.1016/S0140-6736(96)90861-2. Emerit I: Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med. 1994, 16: 99-109. 10.1016/0891-5849(94)90246-1. Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR, Mulas C, Mudu MC, Murgia V, Camboni P: Quantitative evaluation of oxidative stress, chronic inflammatory indices and leptin in cancer patients: correlation with stage and performance status. Int J Cancer. 2002, 98: 84-91. 10.1002/ijc.10143. Farhadi A, Fields J, Banan A, Keshavarzian A: Reactive oxygen species: are they involved in the pathogenesis of GERD, Barrett's esophagus, and the latter's progression toward esophageal cancer?. Am J Gastroenterol. 2002, 97: 22-6. 10.1016/S0002-9270(01)04006-0. Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS: Atherosclerosis and cancer: common molecular pathways of disease development and progression. Ann N Y Acad Sci. 2001, 947: 271-92. Abiaka C, Al-Awadi F, Al-Sayer H, Gulshan S, Behbehani A, Farghally M, Simbeye A: Serum antioxidant and cholesterol levels in patients with different types of cancer. J Clin Lab Anal. 2001, 15: 324-30. 10.1002/jcla.1045. Wenger FA, Kilian M, Ridders J, Stahlknecht P, Schimke I, Guski H, Jacobi CA, Muller JM: Influence of antioxidative vitamins A, C and E on lipid peroxidation in BOP-induced pancreatic cancer in Syrian hamsters. Prostaglandins Leukot Essent Fatty Acids. 2001, 65: 165-71. 10.1054/plef.2001.0305. Raung SL, Kuo MD, Wang YM, Chen CJ: Role of reactive oxygen intermediates in Japanese encephalitis virus infection in murine neuroblastoma cells. Neurosci Lett. 2001, 315: 9-12. 10.1016/S0304-3940(01)02300-X. Williams KJ, Cowen RL, Stratford IJ: Hypoxia and oxidative stress. Tumour hypoxia–therapeutic considerations. Breast Cancer Res. 2001, 3: 328-31. 10.1186/bcr316. Brown NS, Bicknell R: Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res. 2001, 3: 323-7. 10.1186/bcr315. VanderJagt DJ, Garry PJ, Bhagavan HN: Ascorbic acid intake and plasma levels in healthy elderly people. Am J Clin Nutr. 1987, 46: 290-4. VanderJagt DJ, Garry PJ, Bhagavan HN: Ascorbate and dehydroascorbate: distribution in mononuclear cells of healthy elderly people. Am J Clin Nutr. 1989, 49: 511-6. Stauber PM, Sherry B, VanderJagt DJ, Bhagavan HN, Garry PJ: A longitudinal study of the relationship between vitamin A supplementation and plasma retinol, retinyl esters, and liver enzyme activities in a healthy elderly population. Am J Clin Nutr. 1991, 54: 878-83. Ghiselli A, Serafini M, Natella F, Scaccini C: Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med. 2000, 29: 1106-14. 10.1016/S0891-5849(00)00394-4. Barbaste M, Verge S, Dumas M, Soulet S, Nay B, Arnaudinaud V, Delaunay J-C, Castagnino C, Cheze C, Vercauteren J: Dietary antioxidants, peroxidation and cardiovascular risks. J Nutr Health Aging. 2002, 6: 138-152. Cao G, Booth SL, Sadowski JA, Prior RL: Increases in human plasma antioxidant capacity following consumption of controlled diets high in fruits and vegetables. Am J Clin Nutr. 1998, 68: 1081-1087. Jackson P, Loughrey CM, Lightbody JH, McNamee PT, Young IS: Effect of hemodialysis on total antioxidant capacity and serum antioxidants in patients with chronic renal failure. Clin Chem. 1995, 41: 1135-1138. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6890/2/3/prepub