A new approach to state estimation for uncertain linear systems in a moving horizon estimation setting
Tóm tắt
This paper addresses the state estimation problem for linear systems with additive uncertainties in both the state and output equations using a moving horizon approach. Based on the full information estimation setting and the game-theoretic approach to the H
∞ filtering, a new optimization-based estimation scheme for uncertain linear systems is proposed, namely the H
∞-full information estimator, H
∞-FIE in short. In this formulation, the set of processed data grows with time as more measurements are received preventing recursive formulations as in Kalman filtering. To overcome the latter problem, a moving horizon approximation to the H
∞-FIE is also presented, the H
∞-MHE in short. This moving horizon approximation is achieved since the arrival cost is suitably defined for the proposed scheme. Sufficient conditions for the stability of the H
∞-MHE are derived. Simulation results show the benefits of the proposed scheme when compared with two H
∞ filters and the well-known Kalman filter.
Tài liệu tham khảo
G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 301–320, 1981.
R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME—Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.
D. Simon. Optimal State Estimation: Kalman, H ∞, and Nonlinear Approaches, 2nd ed., Hoboken, New Jersey, USA: Wiley-Interscience, 2006.
R. S. Mangoubi, B. D. Appleby, G. C. Verghese. Robust estimation for discrete-time linear systems. In Proceedings of American Control Conference, IEEE, Baltimore, USA, vol. 1, pp. 656–661, 1994.
X. F. Hong, Y. Z.Wang, H. T. Li. Robust H ∞ filter design for time-delay systems with saturation. International Journal of Automation and Computing, vol. 10, no. 4, pp. 368–374, 2013.
C. V. Rao. Moving Horizon Strategies for the Constrained Monitoring and Control of Nonlinear Discrete-time Systems, Ph.D. dissertation, University of Winsconsin-Madison, USA, 2000.
C. V. Rao, J. B. Rawlings. Nonlinear moving horizon state estimation. Nonlinear Model Predictive Control, F. Allgöwer, A. Zheng, Eds., Basel, Switzerland: Birkhäuser Basel, vol. 26, pp. 45–69, 2000.
M. Ellis, J. Zhang, J. F. Liu, P. D. Christofides. Moving horizon estimation based output fedback economic model predictive control. Systems & Control Letters, vol. 68, pp. 101–109, 2014.
A. S. Grema, Y. Cao. Optimal feedback control of oil reservoir waterflooding processes. International Journal of Automation and Computing, vol. 13, no. 1, pp. 73–80, 2016.
L. Zhang, X. W. Gao. Synthesizing scheduled robust model predictive control with target tracking. International Journal of Automation and Computing, vol. 9, no. 4, pp. 337–341, 2012.
K. R. Muske, J. B. Rawlings, J. H. Lee. Receding horizon recursive state estimation. In Proceedings of American Control Conference, IEEE, San Francisco, USA, pp. 900–904, 1993.
C. V. Rao, J. B. Rawlings, J. H. Lee. Constrained linear state estimationCa moving horizon approach. Automatica, vol. 37, no. 10, pp. 1619–1628, 2001.
A. Alessandri, M. Baglietto, G. Battistelli. Robust recedinghorizon estimation for uncertain discrete-time linear systems. In Proceedings of the European Control Conference, IEEE, Cambridge, UK, pp. 1459–1464, 2003.
A. Alessandri, M. Baglietto, G. Battistelli. A minimax receding-horizon estimator for uncertain discrete-time linear systems. In Proceedings of the American Control Conference, IEEE, Boston, USA, vol. 1, pp. 205–210, 2004.
A. Alessandri, M. Baglietto, G. Battistelli. Robust recedinghorizon state estimation for uncertain discrete-time linear systems. Systems & Control Letters, vol. 54, no. 7, pp. 627–643, 2005.
A. Alessandri, M. Baglietto, G. Battistelli. Robust recedinghorizon estimation for discrete-time linear systems in the presence of bounded uncertainties. In Proceedings of the 44th IEEE Conference on Decision and Control and 2005 European Control Conference, IEEE, Seville, Spain, pp. 4269–4274, 2005.
A. Alessandri, M. Baglietto, G. Battistelli. Minmax moving horizon estimation for uncertain discretetime linear systems. SIAM Journal on Control and Optimization, vol. 50, no. 3, pp. 1439–1465, 2012.
R. N. Banavar, J. L. Speyer. A linear-quadratic game approach to estimation and smoothing. In Proceedings of American Control Conference, IEEE, Boston, USA, pp. 2818–2822, 1991.
G. P. Papavassilopoulos, M. G. Safonov. Robust control design via game theoretic methods. In Proceedings of the 28th IEEE Conference on Decision and Control, IEEE, Tampa, USA, vol. 1, pp. 382–387, 1989.
J. B. Rawlings, D. Q. Mayne. Model Predictive Control: Theory and Design, Madison, WI, USA: Nob Hill Publishing, 2009.
A. H. Jazwinski. Stochastic Processes and Filtering Theory, New York, USA: Academic Press, 1970.
T. Bassar, P. Bernhard. H ∞ Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, 2nd ed., Basel, Switzerland: Birkhauser Basel, 1995.
A. E. Bryson, Y. C. Ho. Applied Optimal Control, New York, USA: Taylor & Francis, 1975.
D. E. Kirk. Optimal Control Theory: An Introduction, Dover, USA: Dover Publications, 2004.
J. Garcia. Robust Estimation of Uncertain Linear Systems using a Moving Horizon Approach, Ph.D. dissertation, Universidad Nacional de Colombia, de Colombia, 2012.
C. de Souza, M. Gevers, G. Goodwin. Riccati equations in optimal filtering of nonstabilizable systems having singular state transition matrices. IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 831–838, 1986.
B. D. Appleby. Robust Estimator Design Using the H ∞ Norm and the µ Synthesis, Ph. D. dissertation, Massachusetts Institute of Technology, USA, 1990.