A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit)

Conservation Physiology - Tập 4 Số 1 - Trang cow012 - 2016
Nicholas J. Rogers1, Mauricio A. Urbina1, Erin E. Reardon1, David J. McKenzie2, Rod W. Wilson1
1College of Life and Environmental Sciences [Exeter]
2MARine Biodiversity Exploitation and Conservation

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1016/j.aquaculture.2011.06.003

10.1139/z64-016

10.1139/z64-015

10.1023/A:1007676325825

10.1016/j.aquatox.2009.10.019

10.1242/jeb.005835

10.1007/s003600050228

10.1890/03-9000

Butler, 1975, The effect of progressive hypoxia on respiration in the dogfish (Scyliorhinus canicula) at different seasonal temperatures, J Exp Biol, 63, 117, 10.1242/jeb.63.1.117

Cerezo Valverde, 2006, Oxygen consumption and ventilatory frequency responses to gradual hypoxia in common dentex (dentex dentex): Basis for suitable oxygen level estimations, Aquaculture, 256, 542, 10.1016/j.aquaculture.2006.02.030

10.1111/jfb.12845

Chapman LJ , McKenzie D (2009) Behavioural responses and ecological consequences. In Richards JG , Farrell AP , Brauner CJ , eds, Hypoxia in Fishes. Elsevier, San Diego.

10.1016/S1095-6433(02)00195-2

10.1098/rstb.2011.0422

Claireaux, 2016, Responses by fishes to environmental hypoxia: integration through Fry’s concept of aerobic metabolic scope, J Fish Biol, 88, 232, 10.1111/jfb.12833

10.1242/jeb.084251

10.1046/j.1365-2656.1999.00337.x

10.1016/0022-0981(95)00102-6

Collins GM , Clark TD , Rummer JL , Carton AG (2013) Hypoxia tolerance is conserved across genetically distinct sub-populations of an iconic, tropical Australian teleost (Lates calcarifer). Conserv Physiol 1: doi:10.1093/conphys/cot029.

10.1242/jeb.057091

10.1242/jeb.073023

Cook, 2014, The response of striped surfperch Embiotoca lateralis to progressive hypoxia: swimming activity, shoal structure, and estimated metabolic expenditure, J Exp Mar Biol Ecol, 460, 162, 10.1016/j.jembe.2014.07.002

Cooke SJ , Sack L , Franklin CE , Farrell AP , Beardall J , Wikelski M , Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol 1: doi:10.1093/conphys/cot001.

10.1002/jez.520

10.1111/j.1461-0248.2008.01253.x

10.1111/j.1095-8649.1998.tb01034.x

10.1111/j.1095-8649.1997.tb01970.x

10.1016/j.aquaculture.2014.02.025

De Boeck, 2000, Salt stress and resistance to hypoxic challenges in the common carp (Cyprinus carpio L.), J Fish Biol, 57, 761, 10.1111/j.1095-8649.2000.tb00273.x

10.1242/jeb.082891

10.2134/jeq2001.302275x

Diaz RJ , Breitburg DL (2009) Chapter 1 The Hypoxic Environment. In Jeffrey G , Richards APF , Colin JB , eds, Fish Physiology, Vol 27. Academic Press. pp 1–23.

10.1126/science.1156401

Domenici P , Herbert NA , LeFrançois C , Steffensen JF , McKenzie DJ (2012) The effect of hypoxia on fish swimming performance and behaviour. In Palstra AP , Planas JV , eds, Swimming Physiology of Fish. Springer Verlag, Berlin, pp 129–161.

10.1139/cjfas-2012-0327

Farrell AP , Richards JG (2009) Chapter 11 Defining Hypoxia: an integrative synthesis of the responses of fish to hypoxia. In Jeffrey G , Richards APF , Colin JB , eds, Fish Physiology, Vol 27. Academic Press, London, pp 487–503.

Faulwetter, 2014, Polytraits: a database on biological traits of marine polychaetes, Biodivers Data J, 2, e1024, 10.3897/BDJ.2.e1024

10.1111/j.1095-8649.1989.tb03002.x

Ficke, 2007, Potential impacts of global climate change on freshwater fisheries, Rev Fish Biol Fisher, 17, 581, 10.1007/s11160-007-9059-5

10.5194/bg-11-1215-2014

10.1577/1548-8446-34.10.487

Fry FEJ (1957) The aquatic respiration of fish. In Brown M. , ed., The Physiology of Fishes, Vol. I. Academic Press, New York, pp 1–63.

10.1242/jeb.053132

10.1016/S1095-6433(01)00391-9

Gonzalez, 1992, The relationship between oxygen consumption and ion loss in a freshwater fish, J Exp Biol, 163, 317, 10.1242/jeb.163.1.317

Green, 1967, New tables for oxygen saturation of seawater, J Mar Biol, 25, 140

Haney, 1997, Influence of environmental salinity on routine metabolic rate and critical oxygen tension of Cyprinodon variegatus, Physiol Zool, 70, 511, 10.1086/515867

10.1086/587092

Hilton, 2008, Physiology underpins habitat partitioning in a sympatric sister-species pair of intertidal fishes, Funct Ecol, 22, 1108, 10.1111/j.1365-2435.2008.01465.x

10.1242/jeb.074781

IPCC (2014). Summary for Policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC et al., Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 1–32.

Ishimatsu, 2005, Physiological effects on fishes in a high-CO2 world, J Geophys Res-Oceans, 110, 2156, 10.1029/2004JC002564

10.3354/meps07823

10.1007/s00360-009-0428-3

Jensen FB , Nikinmaa M , Weber RE (1993) Environmental perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. In Rankin JC , Jensen FB , eds, Fish Ecophysiology. Chapman and Hall, London, pp 162–179.

Jobling M (1993) Bioenergetics: feed intake and energy partitioning. In Rankin JC , Jensen FB , eds, Fish Ecophysiology. Chapman and Hall, London, pp. 297–321.

10.1890/08-1494.1

10.1098/rsbl.2012.0609

10.1111/j.1365-2486.2011.02451.x

10.1073/pnas.122154899

Keeling, 2009, Ocean deoxygenation in a warming world, Annu Rev Mar Sci, 2, 199, 10.1146/annurev.marine.010908.163855

10.1126/science.71.1833.195

Kieffer, 1998, A respirometric analysis of fuel use during aerobic swimming at different temperatures in rainbow trout (Oncorhynchus mykiss), J Exp Biol, 201, 3123, 10.1242/jeb.201.22.3123

10.3354/dao02693

Leiva, 2015, Physiological responses of the ghost shrimp Neotrypaea uncinata (Milne Edwards 1837) (Decapoda: Thalassinidea) to oxygen availability and recovery after severe environmental hypoxia, Comp Bioch Physiol A Mol Integr Physiol, 189, 30, 10.1016/j.cbpa.2015.07.008

10.1093/icb/ict066

McDonald DG , Wood CM (1993) Branchial mechanisms of acclimation to metals in freshwater fish. In Rankin JC , Jensen FB , eds, Fish Ecophysiology. Chapman and Hall, London, pp 297–321.

McGill, 2006, Rebuilding community ecology from functional traits, Trends Ecology Evol, 21, 178, 10.1016/j.tree.2006.02.002

10.1242/jeb.00352

10.1111/j.1095-8649.2007.01337.x

10.1007/s00227-008-0998-8

Mamun, 2013, A respirometer system to measure critical and recovery oxygen tensions of fish under simulated diurnal fluctuations in dissolved oxygen, Aquacult Int, 21, 31, 10.1007/s10499-012-9529-1

10.1098/rspb.2008.1235

10.1242/jeb.085712

10.1007/s10584-011-0156-z

10.5194/bg-6-2313-2009

Monteiro, 2013, Cardiorespiratory responses to graded hypoxia in the neotropical fish matrinxã (Brycon amazonicus) and traíra (Hoplias malabaricus) after waterborne or trophic exposure to inorganic mercury, Aquat Toxicol, 140–141, 346, 10.1016/j.aquatox.2013.06.011

10.1016/j.jtherbio.2006.01.005

10.1073/pnas.0809996106

Murchie, 2011, Thermal biology of bonefish (Albula vulpes) in Bahamian coastal waters and tidal creeks: an integrated laboratory and field study, J Therm Biol, 36, 38, 10.1016/j.jtherbio.2010.10.005

Nelson, 2016, Oxygen consumption rate versus rate of energy utilisation of fishes: a comparison and brief history of the two measures, J Fish Biol, 88, 10, 10.1111/jfb.12824

Nickerson, 1989, Estimating physiological thresholds with continuous 2-phase regression, Physiol Zool, 62, 866, 10.1086/physzool.62.4.30157934

10.1242/jeb.000281

10.1111/j.1469-185X.2008.00038.x

10.1242/jeb.00713

10.1242/jeb.02718

10.1098/rspb.2006.3706

10.1016/j.cbpa.2010.03.009

Nilsson S (1986) Control of gill blood flow. In Nielsson S , Holmgren S , eds, Fish Physiology: Recent Advances. Croom Helm, London, pp 87–101.

Norin, 2016, Measurement and relevance of maximum metabolic rate in fishes, J Fish Biol, 88, 122, 10.1111/jfb.12796

10.1098/rspb.2004.2700

Ott, 1980, A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes, Comp Biochem Physiol A Physiol, 67, 337, 10.1016/S0300-9629(80)80005-3

Perna, 1996, Gill morphometry of the facultative air-breathing loricariid fish, Hypostomus plecostomus (Walbaum) with, special emphasis on aquatic respiration, Fish Physiol Biochem, 15, 213, 10.1007/BF01875572

Perry SF , Jonz MG , Gilmour KM (2009) Chapter 5 Oxygen sensing and the hypoxic ventilatory response. In Jeffrey G , Richards APF , Colin JB , eds, Fish Physiology, Vol 27. Academic Press, pp 193–253.

10.1007/s001140100216

10.1242/jeb.037523

Pörtner HO , Grieshaber MK (1993) Critical PO2(s) in oxyconforming and oxyregulating animals: gas exchange, metabolic rate and the mode of energy production. In Bicudo JEPW, eds, The vertebrate gas transport cascade adaptations to environment and mode of life. CRC Press, Boca Raton, FL.

Pörtner HO , Lannig G (2009) Chapter 4 Oxygen and capacity limited thermal tolerance. In Jeffrey G , Richards APF , Colin JB , eds, Fish Physiology, Vol 27. Academic Press, pp 143–191.

Rantin, 1993, Cardio-respiratory responses in two ecologically distinct erythrinids (Hoplias malabaricus and Hoplias lacerdae) exposed to graded environmental hypoxia, Environ Biol Fish, 36, 93, 10.1007/BF00005983

10.1086/651100

Remen, 2013, Hypoxia tolerance thresholds for post-smolt Atlantic salmon: dependency of temperature and hypoxia acclimation, Aquaculture, 416–417, 41, 10.1016/j.aquaculture.2013.08.024

Richards JG (2009) Chapter 10 Metabolic and molecular responses of fish to hypoxia. In Jeffrey G , Richards APF , Colin JB eds, Fish Physiology, Vol 27. Academic Press, pp 443–485.

Riebesell U , Fabry VJ , Hansson L , Gattuso JP (eds.) (2010) Guide to Best Practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, 260 pp.

Rogers NJ (2015) Chapter 4: Respiratory responses and gut carbonate production during hypoxia and hypercarbia in the European flounder (Platichthys flesus). In The Respiratory and Gut Physiology of Fish: Responses to Environmental Change. PhD Dissertation, University of Exeter, Exeter, UK, pp 95–139.

Rosenberger, 2000, Respiratory characters of three species of haplochromine cichlids: implications for use of wetland refugia, J Fish Biol, 57, 483, 10.1111/j.1095-8649.2000.tb02187.x

10.1016/S1095-6433(01)00484-6

10.1098/rspb.2015.1028

Schjolden, 2007, The toxicity of copper to crucian carp (Carassius carassius) in soft water, Sci Total Environ, 384, 239, 10.1016/j.scitotenv.2007.06.009

Schurmann, 1997, Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod, J Fish Biol, 50, 1166

10.1007/s00360-008-0283-7

10.1098/rstb.2012.0036

10.1242/jeb.02090

Smith, 2003, Eutrophication of freshwater and coastal marine ecosystems – a global problem, Environ Sci Pollut Res, 10, 126, 10.1065/espr2002.12.142

Snyder, 2016, Effect of closed v. intermittent-flow respirometry on hypoxia tolerance in the shiner perch Cymatogaster aggregata, J Fish Biol, 88, 252, 10.1111/jfb.12837

10.1242/jeb.01505

Sørensen, 2014, Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival, Glob Change Biol, 20, 724, 10.1111/gcb.12399

10.1242/jeb.059642

10.1016/j.jembe.2013.10.006

10.1007/BF02995809

Stinchcombe, 2012, Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes, Trends Ecology Evol, 27, 637, 10.1016/j.tree.2012.07.002

Svendsen, 2016, Design and setup of an intermittent-flow respirometry system for aquatic organisms, J Fish Biol, 88, 26, 10.1111/jfb.12797

10.1016/j.ecoenv.2008.11.003

10.1111/j.1095-8649.2009.02533.x

10.1086/421754

10.1111/j.0022-1112.2004.00474.x

Ultsch, 1996, Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to air-breathing among vertebrates, Palaeogeogr Palaeocl, 123, 1, 10.1016/0031-0182(96)00121-6

10.2307/1936635

10.1016/S0300-9629(80)80004-1

Urbina, 2012, Should I stay or should I go? Physiological, metabolic and biochemical consequences of voluntary emersion upon aquatic hypoxia in the scaleless fish Galaxias maculatus, J Comp Physiol B, 182, 1057, 10.1007/s00360-012-0678-3

Urbina, 2013, Relationship between fish size and metabolic rate in the oxyconforming inanga Galaxias maculatus reveals size-dependent strategies to withstand hypoxia, Physiol Biochem Zool, 86, 740, 10.1086/673727

Urbina, 2015, Effect of salinity on osmoregulation, metabolism and nitrogen excretion in the amphidromous fish, inanga (Galaxias maculatus), J Exp Mar Biol Ecol, 473, 7, 10.1016/j.jembe.2015.07.014

10.1016/j.physbeh.2011.02.009

Urbina, 2012, A novel oxyconforming response in the freshwater fish Galaxias maculatus, Comp Biochem Physiol A Mol Integr Physiol, 161, 301, 10.1016/j.cbpa.2011.11.011

10.1073/pnas.0803833105

Vega, 2012, Why are there so few fish in the sea?, Proc R Soc B, 283, 1826

10.1139/f94-056

Yamanaka, 2007, Difference in the hypoxia tolerance of the round crucian carp and largemouth bass: implications for physiological refugia in the macrophyte zone, Ichthyol Res, 54, 308, 10.1007/s10228-006-0400-0

10.1086/physzool.62.4.30157935

10.5194/bg-7-1443-2010