A new amplified impedimetric aptasensor based on the electron transfer ability of Au nanoparticles and their affinity with aptamer
Tài liệu tham khảo
Yan, 2012, A simple and sensitive electrochemical aptasensor for determination of chloramphenicol in honey based on target-induced strand release, J. Electroanal. Chem., 687, 89, 10.1016/j.jelechem.2012.10.016
Iliuk, 2011, Aptamer in bioanalytical applications, Anal. Chem., 83, 4440, 10.1021/ac201057w
Famulok, 2011, Aptamer modules as sensors and detectors, Acc. Chem. Res., 44, 1349, 10.1021/ar2000293
Hun, 2015, Aptamer biosensor for highly sensitive and selective detection of dopamine using ubiquitous personal glucose meters, Sensors Actuators B Chem., 209, 596, 10.1016/j.snb.2014.11.135
Zhang, 2013, Nanoporous gold based optical sensor for sub-ppt detection of mercury ions, ACS Nano, 7, 4595, 10.1021/nn4013737
Jiang, 2014, Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A, Anal. Chim. Acta, 806, 128, 10.1016/j.aca.2013.11.003
Yuan, 2014, Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification, Anal. Chim. Acta, 811, 70, 10.1016/j.aca.2013.11.022
Kuang, 2010, Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A, Biosens. Bioelectron., 26, 710, 10.1016/j.bios.2010.06.058
Kong, 2011, Aptamer-assembled nanomaterials for biosensing and biomedical applications, Small, 7, 2428
Crut, 2015, Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects, Ultrasonics, 56, 98, 10.1016/j.ultras.2014.02.013
Wang, 2013, Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity, ACS Appl. Mater. Interfaces, 5, 2786, 10.1021/am302030a
Ping, 2015, Recent advances in aptasensors based on graphene and graphene-like nanomaterials, Biosens. Bioelectron., 64, 373, 10.1016/j.bios.2014.08.090
Lu, 2007, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222, 10.1002/anie.200602866
Wu, 2014, Nanomaterials as signal amplification elements in DNA-based electrochemical sensing, Nano Today, 9, 197, 10.1016/j.nantod.2014.04.002
Cao, 2011, Gold nanoparticle-based signal amplification for biosensing, Anal. Biochem., 417, 1, 10.1016/j.ab.2011.05.027
Li, 2013, A selective amperometric sensing platform for lead based on target-induced strand release, Analyst, 138, 461, 10.1039/C2AN36227A
Deng, 2009, Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein, Anal. Chem., 81, 9972, 10.1021/ac901727z
Wu, 2012, Sensitive electrochemical detection of hydroxyl radical with biobarcode amplification, Anal. Chim. Acta, 756, 1, 10.1016/j.aca.2012.10.039
Pinijsuwan, 2008, Sub-femtomolar electrochemical detection of DNA hybridization based on latex/gold nanoparticle-assisted signal amplification, Anal. Chem., 80, 6779, 10.1021/ac800566d
Li, 2012, Catalytic signal amplification of gold nanoparticles combining with conformation-switched hairpin DNA probe for hepatitis C virus quantification, Chem. Commun., 48, 7877, 10.1039/c2cc33635a
Li, 2004, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles, Proc. Natl. Acad. Sci. U. S. A., 101, 14036, 10.1073/pnas.0406115101
Li, 2010, Target-responsive structural switching for nucleic acid-based sensors, Acc. Chem. Res., 43, 631, 10.1021/ar900245u
Li, 2005, Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity, Angew. Chem. Int. Ed., 44, 5100, 10.1002/anie.200500403
Wang, 2008, Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution, Anal. Chem., 80, 9021, 10.1021/ac801382k
Yang, 2014, Enhanced charge transfer by gold nanoparticle at DNA modified electrode and its application to label-free DNA detection, ACS Appl. Mater. Interfaces, 6, 7579, 10.1021/am500912m
Zhang, 2008, Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures, Small, 4, 1196, 10.1002/smll.200800057
Nicolaidis, 2006, Metabolic mechanism of wakefulness (and hunger) and sleep (and satiety): role of adenosine triphosphate and hypocretin and other peptides, Metabolism, 55, S24, 10.1016/j.metabol.2006.07.009
Jiménez, 2015, Aptamer-based label-free impedimetric biosensor for detection of progesterone, Anal. Chem., 87, 1075, 10.1021/ac503639s
Bonanni, 2010, Use of nanomaterials for impedimetric DNA sensors: a review, Anal. Chim. Acta, 678, 7, 10.1016/j.aca.2010.08.022
Wang, 2012, Graphene enhanced electron transfer at aptamer modified electrode and its application in biosensing, Anal. Chem., 84, 7301, 10.1021/ac300521d
Wu, 2013, Sensitive electrochemical aptasensor by coupling “signal-on” and “signal-off” strategies, Anal. Chem., 85, 8397, 10.1021/ac401810t
Zhang, 2008, Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles, Anal. Chem., 80, 8382, 10.1021/ac800857p
Lin, 2011, Signal-on electrochemiluminescent biosensor for ATP based on the recombination of aptamer chip, Chem. Commun., 47, 8064, 10.1039/c1cc12080h
Li, 2010, Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence, Chem. Commun., 46, 595, 10.1039/B916304B
Deng, 2009, Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles, Anal. Chem., 81, 739, 10.1021/ac800958a
Radi, 2005, Reusable impedimetric aptasensor, Anal. Chem., 77, 6320, 10.1021/ac0505775
Xu, 2005, Label-free electrochemical detection for aptamer-based array electrodes, Anal. Chem., 77, 5107, 10.1021/ac050192m
Li, 2005, Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles, Anal. Chem., 77, 478, 10.1021/ac048672l
Zuo, 2007, A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP, J. Am. Chem. Soc., 129, 1042, 10.1021/ja067024b
Mao, 2015, Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing, Talanta, 143, 381, 10.1016/j.talanta.2015.05.009
Kashefi-Kheyrabadi, 2012, Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate, Biosens. Bioelectron., 37, 94, 10.1016/j.bios.2012.04.045
Zhang, 2011, Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules, Anal. Chim. Acta, 688, 99, 10.1016/j.aca.2010.12.017