Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thuật toán mới dự đoán chuỗi thời gian sử dụng các mô hình học máy
Tóm tắt
Tìm kiếm lưới hai giai đoạn được chấp nhận như một kỹ thuật tìm kiếm heuristic đầy hứa hẹn, bao gồm một quá trình tìm kiếm thực hiện ở hai giai đoạn. Ở giai đoạn đầu tiên, một tìm kiếm được thực hiện với độ phân giải thô thấp để xác định khu vực tối ưu và, ở giai đoạn thứ hai, một tìm kiếm độ phân giải cao hơn được thực hiện trong khu vực lân cận của khu vực tối ưu để xác định các tham số tối ưu. Việc thực hiện tìm kiếm ở hai giai đoạn làm giảm đáng kể độ phức tạp tính toán so với thuật toán tìm kiếm lưới cơ bản. Tuy nhiên, một tìm kiếm toàn diện cần được tiến hành trong không gian con trong giai đoạn thứ hai, điều này có thể lại trở thành một nhiệm vụ tốn kém về mặt tính toán. Đóng góp chính của bài báo này là phát triển một kỹ thuật tìm kiếm heuristic mới, khám phá không gian tham số rời rạc theo chiều sâu một cách đệ quy. Độ phức tạp thời gian của thuật toán đề xuất thấp hơn so với thuật toán tìm kiếm lưới hai giai đoạn. Hiệu suất của thuật toán đề xuất về số lượng phép đo cần thiết và thời gian cho việc chọn mô hình tối ưu, so với tìm kiếm lưới hai giai đoạn, được xác minh về tính chính xác và hiệu quả.
Từ khóa
#học máy #tìm kiếm heuristic #chuỗi thời gian #độ phức tạp tính toán #mô hình tối ưuTài liệu tham khảo
Yeturu J (2019) Statistical data mining technique for salient feature extraction. Int J Intell Syst Technol Appl 18(4):353–376
Yeturu J (2012) A cogitate study on text mining. Int J Eng Adv Technol 1(6):189–196
Yeturu J (2015) FPST: a new term weighting algorithm for long running and short lived events. Int J Data Anal Tech Strat 7(4):366–383
Yeturu J (2019) Analysis of weather data using various regression algorithms. Int J Data Sci 4(2):117. https://doi.org/10.1504/IJDS.2019.100321
Yeturu J (2018) A new term weighting algorithm for identifying salient events. Laplambert Publishers, ISBN: 978‐613‐87638‐2.
Jahnavi Y, Elango P, Raja SP, Kumar PN (2021) A novel ensemble stacking classification of genetic variations using machine learning algorithms. Int J Image Gr. https://doi.org/10.1142/S0219467823500158
Yu PD, Chen ST, Chang IF (2006) Support vector regression for real time flood stage forecasting. J Hydrol 328(3–4):704–716
Panahi M, Dodangeh E, Rezaie F, Khosravi K, Le HV, Lee M-J, Lee S, Pham BT (2021) Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. CATENA 199:105114. https://doi.org/10.1016/j.catena.2020.105114
Chakraverty S, Gupta P (2007) Comparison of neural network configurations in the long-range forecast of southwest monsoon rainfall over India. Neural Comput Appl 17:187–192. https://doi.org/10.1007/s00521-007-0093-y
Min JH, Lee Y-C (2005) Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Syst Appl 28(4):603–614
Wagle M, Yang Z, Benslimane Y (2017) Bankruptcy prediction using data mining techniques. In: 8th international conference of information and communication technology for embedded systems (IC-ICTES). Chonburi, Thailand, pp 1–4
Tingfei H, Guangquan C, Kuihua H (2020) Using variational auto encoding in credit card fraud detection. IEEE Access 8:149841–149853. https://doi.org/10.1109/ACCESS.2020.3015600
Huang Z, Chen H, Hsu CJ, Chen WH, Wu S (2004) Credit rating analysis with support vector machine and neural networks: a market comparative study. Decis Support Syst Decis Support Syst 37:543–558
Kumar P, Iqbal F (2019) Credit card fraud identification using machine learning approaches. In: 2019 1st International conference on innovations in information and communication technology (ICIICT). Chennai, India, pp 1–4. https://doi.org/10.1109/ICIICT1.2019.8741490
Liu Z, Loo CK, Pasupa K (2021) A novel error-output recurrent two-layer extreme learning machine for multi-step time series prediction. Sustain Cities Soc 66:102613. https://doi.org/10.1016/j.scs.2020.102613
Jaramillo J, Velasquez JD, Franco CJ (2017) Research in financial time series forecasting with SVM: contributions from literature. IEEE Lat Am Trans 15(1):145–153. https://doi.org/10.1109/TLA.2017.7827918
Yu H, Ming LJ, Sumei R, Shuping Z (2020) A hybrid model for financial time series forecasting—integration of EWT, ARIMA with the Improved ABC optimized ELM. IEEE Access 8:84501–84518. https://doi.org/10.1109/ACCESS.2020.2987547
Singh R, Rajpal N, Mehta R (2021) An empiric analysis of wavelet-based feature extraction on deep learning and machine learning algorithms for arrhythmia classification. Int J Interact Multimed Artif Intell 6(6):25–34. https://doi.org/10.9781/ijimai.2020.11.005
Hsu CW, Chang CC, Lin CJ (2016) A practical guide to support vector classification. Technical Report Department of Computer Science, National Taiwan University
Wu S-J, Pham V-H, Nguyen T-N (2017) Two-phase optimization for support vectors and parameter selection of support vector machines: two-class classification. Appl Soft Comput 59:129–142. https://doi.org/10.1016/j.asoc.2017.05.021
Saeed S, Ong HC (2019) Performance of SVM with multiple kernel learning for classification tasks of imbalanced datasets. Pertanika J Sci Technol 27(1):527–545
Yan C, Xu S, Huang Y, Huang Y, Zhang Z (2017) Two-phase neural network model for pollution concentrations forecasting. In: 2017 Fifth international conference on advanced cloud and big data (CBD), Shanghai, pp 385–390
Dong R, Fisman R, Wang Y, Xu N (2021) Air pollution affect and forecasting bias: evidence from Chinese financial analysts. J Financ Econ 139(3):971–984. https://doi.org/10.1016/j.jfineco.2019.12.004
Li Y, Tao Y (2017) PM10 Concentration forecast based on wavelet support vector machine. In: 2017 international conference on sensing, diagnostics, prognostics, and control (SDPC), Shanghai, pp 383–386
Zhang Z, Hong W, Li J (2020) Electric load forecasting by hybrid self-recurrent support vector regression model with variational mode decomposition and improved cuckoo search algorithm. IEEE Access 8:14642–14658. https://doi.org/10.1109/ACCESS.2020.2966712
Hasan N, Nath NC, Rasel RI (2015) A support vector regression model for forecasting rainfall. In: 2015 2nd International conference on electrical information and communication technologies (EICT). Khulna, Bangladesh, pp 554–559
Deb B, Khan SR, Tanvir Hasan K, Khan AH, Alam MA (2019) Travel time prediction using machine learning and weather impact on traffic conditions. In: 2019 IEEE 5th international conference for convergence in technology (I2CT), Bombay, India, pp 1–8. https://doi.org/10.1109/I2CT45611.2019.9033922
Feng Z-k, Niu W-j, Tang Z-y, Jiang Z-q, Xu Y, Liu Y, Zhang H-r (2020) Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. J Hydrol 583:124627. https://doi.org/10.1016/j.jhydrol.2020.124627
Zendehboudi A, Baseer MA, Saidur R (2018) Application of support vector machine models for forecasting solar and wind energy resources: a review. J Clean Prod 199:272–285. https://doi.org/10.1016/j.jclepro.2018.07.164
Yang A, Li W, Yang X (2019) Short-term electricity load forecasting based on feature selection and least squares support vector machines. Knowl-Based Syst 163:159–173. https://doi.org/10.1016/j.knosys.2018.08.027
Nagendra KV, Jahnavi Y, Haritha N (2007) A survey on support vector machines and artificial neural network in rainfall forecasting. Int J Futur Revolut Comput Sci Commun Eng 3(11):20–24
Digital technology group, archive data cambridge dataset. www.cl.cam.ac.uk/research/dtg/weather/