A new Michaelis-Menten equation valid everywhere multi-scale dynamics prevails

Mathematical Biosciences - Tập 315 - Trang 108220 - 2019
Dimitris G. Patsatzis1, Dimitris A. Goussis2
1School of Mathematical and Physical Sciences, National Technical University of Athens, Athens, 15780, Greece
2Department of Mechanical Engineering, Khalifa University, Abu Dhabi,127788, United Arab Emirates

Tài liệu tham khảo

Henri, 1903 Brown, 1902, Enzyme action, J. Chem. Society Trans., 81, 373, 10.1039/CT9028100373 Michaelis, 1913, Die kinetik der invertinwirkung, Biochem. Z., 49, 333 Cornish-Bowden, 2015, One hundred years of Michaelis-Menten kinetics, Perspect. Sci., 4, 3, 10.1016/j.pisc.2014.12.002 Pedersen, 2008, Quasi steady-state approximations in complex intracellular signal transduction networks - a word of caution, J. Math. Chem., 43, 1318, 10.1007/s10910-007-9248-4 Pedersen, 2008, The total quasi-steady-state approximation for complex enzyme reactions, Math. Comput. Simulat., 79, 1010, 10.1016/j.matcom.2008.02.009 Pedersen, 2007, The total quasi-steady-state approximation for fully competitive enzyme reactions, B. Math. Biol., 69, 433, 10.1007/s11538-006-9136-2 Ciliberto, 2007, Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation, PLOS Comput. Biol., 3, 463, 10.1371/journal.pcbi.0030045 Eilertsen, 2018, Phase-plane geometries in coupled enzyme assays, Math. Biosci., 306, 126, 10.1016/j.mbs.2018.09.008 Bartholomay, 1962, A stochastic approach to statistical kinetics with application to enzyme kinetics, Biochemistry, 1, 223, 10.1021/bi00908a005 Qian, 2002, Single-molecule enzymology: stochastic Michaelis - Menten kinetics, Biophys. Chem., 101, 565, 10.1016/S0301-4622(02)00145-X Herath, 2018, Reduced linear noise approximation for biochemical reaction networks with time-scale separation: the stochastic tQSSA+, J. Chem. Phys., 148, 094108, 10.1063/1.5012752 Barik, 2008, Stochastic simulation of enzyme-catalyzed reactions with disparate timescales, Biophys. J., 95, 3563, 10.1529/biophysj.108.129155 Kim, 2015, The relationship between stochastic and deterministic quasi-steady state approximations, BMC Syst. Biol., 9, 87, 10.1186/s12918-015-0218-3 Choi, 2017, Beyond the Michaelis-Menten equation: accurate and efficient estimation of enzyme kinetic parameters, Sci. Rep.-UK, 7, 17018, 10.1038/s41598-017-17072-z Cornish-Bowden, 2014 Cárdenas, 2013, Michaelis and Menten and the long road to the discovery of cooperativity, FEBS Lett., 587, 2767, 10.1016/j.febslet.2013.07.014 Chen, 2010, Classic and contemporary approaches to modeling biochemical reactions, Gene Dev., 24, 1861, 10.1101/gad.1945410 Deichmann, 2014, Commemorating the 1913 Michaelis-Menten paper die kinetik der invertinwirkung: three perspectives, FEBS J., 281, 435, 10.1111/febs.12598 Schnell, 2003, A century of enzyme kinetics. Should we believe in the Km and Vmax estimates?, Comments Theor. Biol., 8, 169 Schnell, 2014, Validity of the Michaelis - Menten equation, steady-state or reactant stationary assumption: that is the question, FEBS J., 281, 464, 10.1111/febs.12564 Bersani, 2015, New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis - Menten paper, Continuum. Mech. Therm., 27, 659, 10.1007/s00161-014-0367-4 Briggs, 1925, A note on the kinetics of enzyme action, Biochem. J., 19, 338, 10.1042/bj0190338 Lineweaver, 1934, The determination of enzyme dissociation constants, J. Am. Chem. Soc., 56, 658, 10.1021/ja01318a036 Eisenthal, 1974, The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters, Biochem. J., 139, 715, 10.1042/bj1390715 Atkins, 1975, A comparison of seven methods for fitting the Michaelis-Menten equation, Biochem. J., 149, 775, 10.1042/bj1490775 Ainsworth, 1977 Atkins, 1980, Current trends in the estimation of Michaelis-Menten parameters, Anal. Biochem., 104, 1, 10.1016/0003-2697(80)90268-7 Bisswanger, 2014, Enzyme assays, Perspect. Sci., 1, 41, 10.1016/j.pisc.2014.02.005 Stroberg, 2016, On the estimation errors of Km and V from time-course experiments using the Michaelis-Menten equation, Biophys. Chem., 219, 17, 10.1016/j.bpc.2016.09.004 Fan, 2018, In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy, Nat. Commun., 9, 1440, 10.1038/s41467-018-03903-8 Dindas, 2018, AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling, Nat. Commun., 9, 1174, 10.1038/s41467-018-03582-5 Fry, 2018, Predicting retinal tissue oxygenation using an image-based theoretical model, Math. Biosci., 305, 1, 10.1016/j.mbs.2018.08.005 la Cecilia, 2018, Glyphosate dispersion, degradation, and aquifer contamination in vineyards and wheat fields in the Po Valley, Italy, Water Res., 146, 37, 10.1016/j.watres.2018.09.008 Gwanpua, 2018, Modelling ethylene regulated changes in Hass avocado quality, Postharvest Biol. Technol., 136, 12, 10.1016/j.postharvbio.2017.10.002 Tagliafico, 2018, Optimizing heterotrophic feeding rates of three commercially important scleractinian corals, Aquaculture, 483, 96, 10.1016/j.aquaculture.2017.10.013 Gonzalez-Gil, 2018, Why are organic micropollutants not fully biotransformed? A mechanistic modelling approach to anaerobic systems, Water Res., 142, 115, 10.1016/j.watres.2018.05.032 Busch, 2018, LC–MS/MS method for the simultaneous quantification of intestinal CYP and UGT activity, J. Pharmaceut. Biomed., 155, 194, 10.1016/j.jpba.2018.04.003 Liang, 2018, Gibbs free-energy gradient along the path of glucose transport through human glucose transporter 3, ACS Chem. Neurosci., 9, 2815, 10.1021/acschemneuro.8b00223 Straus, 1943, Zone behavior of enzymes illustrated by the effect of dissociation constant and dilution on the system cholinesterase-physostigmine, J. Gen. Physiol., 26, 559, 10.1085/jgp.26.6.559 Hommes, 1962, Analog computer studies of the carboxypeptidase A-catalyzed hydrolysis of chloroacetyl-l-phenylalanine, Arch. Biochem. Biophys., 96, 37, 10.1016/0003-9861(62)90446-0 Wong, 1965, On the steady-state method of enzyme kinetics, J. Am. Chem. Soc., 87, 1788, 10.1021/ja01086a032 Srere, 1967, Enzyme concentrations in tissues, Science, 158, 936, 10.1126/science.158.3803.936 Cha, 1970, Kinetic behavior at high enzyme concentrations magnitude of errors of Michaelis-Menten and other approximations, J. Biol. Chem., 245, 4814, 10.1016/S0021-9258(18)62865-0 Laidler, 1955, Theory of the transient phase in kinetics, with special reference to enzyme kinetics, Can. J. Chem., 33, 1614, 10.1139/v55-195 Seshadri, 1980, Analytical solutions of a simple enzyme kinetic problem by a perturbative procedure, Biophys. Struct. Mech., 6, 111, 10.1007/BF00535748 Segel, 1988, On the validity of steady state assumption of enzyme kinetics, B. Math. Biol., 50, 579, 10.1007/BF02460092 Segel, 1989, The quasi-steady-state assumption: a case study in perturbation, SIAM Rev., 31, 446, 10.1137/1031091 Heineken, 1967, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Math. Biosci., 1, 95, 10.1016/0025-5564(67)90029-6 Schauer, 1979, Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction, J. Theor. Biol., 79, 425, 10.1016/0022-5193(79)90235-2 Palsson, 1984, Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics, J. Theor. Biol., 111, 273, 10.1016/S0022-5193(84)80211-8 Schnell, 2000, Enzyme kinetics at high enzyme concentration, B. Math. Biol., 62, 483, 10.1006/bulm.1999.0163 Borghans, 1996, Extending the quasi-steady state approximation by changing variables, B. Math. Biol., 58, 43, 10.1007/BF02458281 Schnell, 2002, Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations, Math. Comput. Model., 35, 137, 10.1016/S0895-7177(01)00156-X Tzafriri, 2003, Michaelis-Menten kinetics at high enzyme concentrations, J. Math. Biol., 65, 1111, 10.1016/S0092-8240(03)00059-4 Dingee, 2008, A new perturbation solution to the Michaelis-Menten problem, AICHE J., 54, 1344, 10.1002/aic.11461 Murugan, 2018, Theory on the rate equation of Michaelis - Menten type single-substrate enzyme catalyzed reactions, J. Math. Chem., 56, 508, 10.1007/s10910-017-0791-3 Fenichel, 1979, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqs., 31, 53, 10.1016/0022-0396(79)90152-9 Kaper, 1999, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, 85 Verhulst, 2005, vol. 50 Kuehn, 2015, vol. 191 Hek, 2010, Geometric singular perturbation theory in biological practice, J. Math. Biol., 60, 347, 10.1007/s00285-009-0266-7 Lam, 1989, Understanding complex chemical kinetics with computational singular perturbation, Proc. Comb. Inst., 22, 931, 10.1016/S0082-0784(89)80102-X Lam, 1993, Using CSP to understand complex chemical kinetics, Combust. Sci. Technol., 89, 375, 10.1080/00102209308924120 Hadjinicolaou, 1998, Asymptotic solution of stiff PDEs with the CSP method: the reaction diffusion equation, SIAM J. Sci. Comp., 20, 781, 10.1137/S1064827596303995 Maas, 1992, Simplifying chemical kinetics - intristic low dimensional manifolds in composition space, Comb. Flame, 88, 239, 10.1016/0010-2180(92)90034-M Zagaris, 2004, Analysis of the computational singular perturbation reduction method for chemical kinetics, J. Nonlinear Sci., 14, 59, 10.1007/s00332-003-0582-9 Goussis, 2012, Quasi steady state and partial equilibrium approximations: their relation and their validity, Combust. Theor. Model., 16, 869, 10.1080/13647830.2012.680502 Goussis, 2015, Model reduction: when singular perturbation analysis simplifies to partial equilibrium approximation, Combust. Flame, 162, 1009, 10.1016/j.combustflame.2014.09.022 Zagaris, 2004, Fast and slow dynamics for the computational singular perturbation method, Multiscale Model. Sim., 2, 613, 10.1137/040603577 Kaper, 2015, Geometry of the computational singular perturbation method, Math. Model. Nat. Phenom., 10, 16, 10.1051/mmnp/201510303 Valorani, 2001, Explicit time-scale splitting algorithms for stiff problems: auto-ignition of gaseous mixtures behind a steady shock, J. Comp. Phys., 169, 44, 10.1006/jcph.2001.6709 Goussis, 2006, Model reduction and physical understanding of slowly oscillating processes: the circadian cycle, Multiscale Model. Sim., 5, 1297, 10.1137/060649768 Kourdis, 2013, Algorithmic asymptotic analysis of the NF-κB signaling system, Comput. Math. Appl., 65, 1516, 10.1016/j.camwa.2012.11.004 Patsatzis, 2016, Asymptotic analysis of a target-mediated drug disposition model: algorithmic and traditional approaches, B. Math. Biol., 78, 1121, 10.1007/s11538-016-0176-y Maris, 2015, The hidden dynamics of the Rössler attractor, Physica D, 295, 66, 10.1016/j.physd.2014.12.010 Goussis, 1992, A study of homogeneous methanol oxidation kinetic using CSP, Proc. Comb. Inst., 24, 113, 10.1016/S0082-0784(06)80018-4 Valorani, 2003, CSP analysis of a transient flame-vortex interaction: time scales and manifolds, Comb. Flame, 134, 35, 10.1016/S0010-2180(03)00067-1 Michalaki, 2018, Asymptotic analysis of a tmdd model: when a reaction contributes to the destruction of its product, J. Math. Biol., 77, 821, 10.1007/s00285-018-1234-x Sols, 1970, Concentrations of metabolites and binding sites. Implications in metabolic regulation, Curr. Top. Cell. Reg., 2, 227, 10.1016/B978-0-12-152802-7.50013-X Albe, 1990, Cellular concentrations of enzymes and their substrates, J. Theor. Biol., 143, 163, 10.1016/S0022-5193(05)80266-8 Schnell, 2002, Enzyme kinetics far from the standard quasi-steady state and equilibrium approximations, Math. Comput. Model., 35, 137, 10.1016/S0895-7177(01)00156-X Flach, 2006, Use and abuse of the quasi-steady-state approximation, IEEE Syst. Biol., 153, 187, 10.1049/ip-syb:20050104 Gunawardena, 2014, Time-scale separation - Michaelis and Menten’s old idea, still bearing fruit, FEBS J., 281, 473, 10.1111/febs.12532 Hanson, 2008, Reactant stationary approximation in enzyme kinetics, J. Phys. Chem. A, 112, 8654, 10.1021/jp8026226