A new Dirichlet process for mining dynamic patterns in functional data
Tài liệu tham khảo
Ahmed, 2008, Dynamic non-parametric mixture models and the recurrent Chinese restaurant process: with applications to evolutionary clustering, 219
Anh, 2013
Arbel, 2011
Banfield, 1993, Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803, 10.2307/2532201
Bezdek, 1974, Cluster validity with fuzzysets, J. Cybernet., 3, 58, 10.1080/01969727308546047
Bezdek, 1981
Bezdek, 1984, FCM: the fuzzy c-means clustering algorithm, Comput. Geosci., 10, 191, 10.1016/0098-3004(84)90020-7
Blei, 2011, Distance dependent chinese restaurant processes, J. Mach. Learn. Res., 12, 2383
Blei, 2006, Variational inference for Dirichlet process mixtures, Bayesian Anal., 1, 121, 10.1214/06-BA104
Campbell, 2013
Campbell, 2013, Dynamic clustering via asymptotic of the dependent Dirichlet process mixture, 449
Chamroukhi, 2010, A hidden process regression model for functional data description: application to curve discrimination, Neurocomputing, 73, 1210, 10.1016/j.neucom.2009.12.023
Chamroukhi, 2016, Piecewise regression mixture for simultaneous functional data clustering and optimal segmentation, J. Classification, 33
Fan, 2012, Online learning of a Dirichlet process mixture of generalized Dirichlet distributions for simultaneous clustering and localized feature selection, 25, 113
Fan, 2014, Online variational learning of generalized Dirichlet mixture models with feature selection, Neurocomputing, 126, 166, 10.1016/j.neucom.2012.09.047
S. Gaffney, P. Smyth, Trajectory clustering with mixtures of regression models. In: Proceedings of the fifth ACM SIGKDD International Conference On Knowledge Discovery and Data Mining (1999) ACM Press, San Diego, CA, USA.
Gershman, 2012, A tutorial on Bayesian nonparametric models, J. Math. Psychol., 56, 1, 10.1016/j.jmp.2011.08.004
Griffin, 2006, Order-based dependent Dirichlet processes, J. Am. Stat. Assoc., 101, 179, 10.1198/016214505000000727
Hastie, 1996, Discriminant analysis by Gaussian mixtures, J. R. Statistical Soc. B, 58, 155
Hathaway, 1993, Switching regression models and fuzzy clustering, IEEE Trans. Fuzzy Syst., 1, 195, 10.1109/91.236552
James, 2003, Clustering for sparsely sampled functional data, J. Am. Stat. Assoc., 98, 397, 10.1198/016214503000189
Kaican, 2005, Convergence rate of Gibbs sampler and its application, Sci. Chin. Ser. A Math., 48, 1430, 10.1360/02ys0013
Kharratzadeh, 2015, Bayesian topic model approaches to online and time-dependent clustering, Digit. Signal Process., 47, 25, 10.1016/j.dsp.2015.03.010
Kim, 2006, Variable selection in clustering via Dirichlet process mixture models, Biometrika., 93, 877, 10.1093/biomet/93.4.877
Lau, 2008, Bayesian mixture of autoregressive models, Comput. Stat. Data Anal., 53, 38, 10.1016/j.csda.2008.06.001
Lin, 2010, Construction of dependent Dirichlet processes based on poisson processes, Adv. Neural Inf. Process. Syst., 23
Liu, 2009, Simultaneous curve registration and clustering for functional data, Comput. Stat Data Anal., 53, 1361, 10.1016/j.csda.2008.11.019
MacQueen, 1967, Some methods for classification and analysis of multivariate observations, 281
MacEachern, 1999, Dependent nonparametric processes
Narendra, 1990, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Netw., 1, 4, 10.1109/72.80202
Neiswanger, 2014, The dependent Dirichlet process mixture of objects for detection-free tracking and object modeling, 660
Nieto-Barajas, 2014, A Bayesian nonparametric approach for time series clustering, Bayesian Anal., 9, 147, 10.1214/13-BA852
Reich, 2011, A spatial Dirichlet process mixture model for clustering population genetics data, Biometrics, 67, 381, 10.1111/j.1541-0420.2010.01484.x
Roberts, 1994, Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms, Stoch. Processes Appl., 49, 207, 10.1016/0304-4149(94)90134-1
Rodriguez, 2008, Bayesian dynamic density estimation, Bayesian Anal., 3, 339, 10.1214/08-BA313
Rodriguez, 2011, Nonparametric Bayesian models through probit stick-breaking processes, Bayesian Anal., 6, 145, 10.1214/11-BA605
Samé, 2011, Model-based clustering and segmentation of time series with changes in regime, Adv. Data Anal. Classif., 5, 301, 10.1007/s11634-011-0096-5
Sato, 2013, Quantum annealing for Dirichlet process mixture models with applications to network clustering, Neurocomputing, 121, 523, 10.1016/j.neucom.2013.05.019
Spellman, 1998, Comprehensive identification of cell cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization, Mol. Biol. Cell, 9, 3273, 10.1091/mbc.9.12.3273
Sugeno, 1993, A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Syst., 1, 7, 10.1109/TFUZZ.1993.390281
Tayal, 2012, Hierarchical double Dirichlet process mixture of Gaussian processes
Wang, 2016, Hierarchical evolving Dirichlet processes for modeling nonlinear evolutionary traces in temporal data, Data Min. Knowl. Disc., 1
Wong, 2000, On a mixture autoregressive model, J. R. Stat. Soc. Ser. B Stat. Methodol., 62, 95, 10.1111/1467-9868.00222
Xiong, 2004, Time series clustering with arma mixtures, Pattern Recogn., 37, 1675, 10.1016/j.patcog.2003.12.018
Xu, 1996, On convergence properties of the EM algorithm for Gaussian mixtures, Neural Comput., 8, 129, 10.1162/neco.1996.8.1.129
Zhang, 2010, Clustering of temporal gene expression data by regularized spline regression and an energy based similarity measure, Pattern Recognit., 43, 3969, 10.1016/j.patcog.2010.07.011
Zhu, 2005