A new Dirichlet process for mining dynamic patterns in functional data

Information Sciences - Tập 405 - Trang 55-80 - 2017
R. Gamasaee1, M.H. Fazel Zarandi1
1Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran, P.O.BOX 15875-4413

Tài liệu tham khảo

Ahmed, 2008, Dynamic non-parametric mixture models and the recurrent Chinese restaurant process: with applications to evolutionary clustering, 219 Anh, 2013 Arbel, 2011 Banfield, 1993, Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803, 10.2307/2532201 Bezdek, 1974, Cluster validity with fuzzysets, J. Cybernet., 3, 58, 10.1080/01969727308546047 Bezdek, 1981 Bezdek, 1984, FCM: the fuzzy c-means clustering algorithm, Comput. Geosci., 10, 191, 10.1016/0098-3004(84)90020-7 Blei, 2011, Distance dependent chinese restaurant processes, J. Mach. Learn. Res., 12, 2383 Blei, 2006, Variational inference for Dirichlet process mixtures, Bayesian Anal., 1, 121, 10.1214/06-BA104 Campbell, 2013 Campbell, 2013, Dynamic clustering via asymptotic of the dependent Dirichlet process mixture, 449 Chamroukhi, 2010, A hidden process regression model for functional data description: application to curve discrimination, Neurocomputing, 73, 1210, 10.1016/j.neucom.2009.12.023 Chamroukhi, 2016, Piecewise regression mixture for simultaneous functional data clustering and optimal segmentation, J. Classification, 33 Fan, 2012, Online learning of a Dirichlet process mixture of generalized Dirichlet distributions for simultaneous clustering and localized feature selection, 25, 113 Fan, 2014, Online variational learning of generalized Dirichlet mixture models with feature selection, Neurocomputing, 126, 166, 10.1016/j.neucom.2012.09.047 S. Gaffney, P. Smyth, Trajectory clustering with mixtures of regression models. In: Proceedings of the fifth ACM SIGKDD International Conference On Knowledge Discovery and Data Mining (1999) ACM Press, San Diego, CA, USA. Gershman, 2012, A tutorial on Bayesian nonparametric models, J. Math. Psychol., 56, 1, 10.1016/j.jmp.2011.08.004 Griffin, 2006, Order-based dependent Dirichlet processes, J. Am. Stat. Assoc., 101, 179, 10.1198/016214505000000727 Hastie, 1996, Discriminant analysis by Gaussian mixtures, J. R. Statistical Soc. B, 58, 155 Hathaway, 1993, Switching regression models and fuzzy clustering, IEEE Trans. Fuzzy Syst., 1, 195, 10.1109/91.236552 James, 2003, Clustering for sparsely sampled functional data, J. Am. Stat. Assoc., 98, 397, 10.1198/016214503000189 Kaican, 2005, Convergence rate of Gibbs sampler and its application, Sci. Chin. Ser. A Math., 48, 1430, 10.1360/02ys0013 Kharratzadeh, 2015, Bayesian topic model approaches to online and time-dependent clustering, Digit. Signal Process., 47, 25, 10.1016/j.dsp.2015.03.010 Kim, 2006, Variable selection in clustering via Dirichlet process mixture models, Biometrika., 93, 877, 10.1093/biomet/93.4.877 Lau, 2008, Bayesian mixture of autoregressive models, Comput. Stat. Data Anal., 53, 38, 10.1016/j.csda.2008.06.001 Lin, 2010, Construction of dependent Dirichlet processes based on poisson processes, Adv. Neural Inf. Process. Syst., 23 Liu, 2009, Simultaneous curve registration and clustering for functional data, Comput. Stat Data Anal., 53, 1361, 10.1016/j.csda.2008.11.019 MacQueen, 1967, Some methods for classification and analysis of multivariate observations, 281 MacEachern, 1999, Dependent nonparametric processes Narendra, 1990, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Netw., 1, 4, 10.1109/72.80202 Neiswanger, 2014, The dependent Dirichlet process mixture of objects for detection-free tracking and object modeling, 660 Nieto-Barajas, 2014, A Bayesian nonparametric approach for time series clustering, Bayesian Anal., 9, 147, 10.1214/13-BA852 Reich, 2011, A spatial Dirichlet process mixture model for clustering population genetics data, Biometrics, 67, 381, 10.1111/j.1541-0420.2010.01484.x Roberts, 1994, Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms, Stoch. Processes Appl., 49, 207, 10.1016/0304-4149(94)90134-1 Rodriguez, 2008, Bayesian dynamic density estimation, Bayesian Anal., 3, 339, 10.1214/08-BA313 Rodriguez, 2011, Nonparametric Bayesian models through probit stick-breaking processes, Bayesian Anal., 6, 145, 10.1214/11-BA605 Samé, 2011, Model-based clustering and segmentation of time series with changes in regime, Adv. Data Anal. Classif., 5, 301, 10.1007/s11634-011-0096-5 Sato, 2013, Quantum annealing for Dirichlet process mixture models with applications to network clustering, Neurocomputing, 121, 523, 10.1016/j.neucom.2013.05.019 Spellman, 1998, Comprehensive identification of cell cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization, Mol. Biol. Cell, 9, 3273, 10.1091/mbc.9.12.3273 Sugeno, 1993, A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Syst., 1, 7, 10.1109/TFUZZ.1993.390281 Tayal, 2012, Hierarchical double Dirichlet process mixture of Gaussian processes Wang, 2016, Hierarchical evolving Dirichlet processes for modeling nonlinear evolutionary traces in temporal data, Data Min. Knowl. Disc., 1 Wong, 2000, On a mixture autoregressive model, J. R. Stat. Soc. Ser. B Stat. Methodol., 62, 95, 10.1111/1467-9868.00222 Xiong, 2004, Time series clustering with arma mixtures, Pattern Recogn., 37, 1675, 10.1016/j.patcog.2003.12.018 Xu, 1996, On convergence properties of the EM algorithm for Gaussian mixtures, Neural Comput., 8, 129, 10.1162/neco.1996.8.1.129 Zhang, 2010, Clustering of temporal gene expression data by regularized spline regression and an energy based similarity measure, Pattern Recognit., 43, 3969, 10.1016/j.patcog.2010.07.011 Zhu, 2005