A new C-eigenvalue interval for piezoelectric-type tensors
Tài liệu tham khảo
Curie, 1880, Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bull. Minéral., 3, 90
Lippmann, 1881, Principe de la conservation de l’électricité, Ann. Chim. Phys., 24, 145
Curie, 1881, Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées, C. R., 93, 1137
Kholkin, 2008, Piezoelectricity and crystal symmetry, 17
Haussühl, 2008
Lovett, 1999
Nye, 1985
Gaeta, 2016, Octupolar order in three dimensions, Eur. Phys. J. E, 39, 113, 10.1140/epje/i2016-16113-7
Jerphagnon, 1970, Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities, Phys. Rev. B, 2, 1091, 10.1103/PhysRevB.2.1091
Kulagin, 2004, Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and LiNbO3 nonlinear optical crystals, Quantum Electron., 34, 657, 10.1070/QE2004v034n07ABEH002823
Geřsgorin, 1931, Uber die abgrenzung der eigenwerte einer matrix, Izv. Akad. Nauk SSSR Ser. Mat., 749
Varga, 2004
Sang, 2019, A new Brauer-type Z-eigenvalue inclusion set for tensors, Numer. Algorithms, 80, 781, 10.1007/s11075-018-0506-2
Chen, 2017, Spectral analysis of piezoelectric tensors, J. Phys. A, 51
Qi, 2005, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40, 1302, 10.1016/j.jsc.2005.05.007
Li, 2019, C-eigenvalues intervals for piezoelectric-type tensors, Appl. Math. Comput., 358, 244
Che, 2019, C-eigenvalue inclusion theorems for piezoelectric-type tensors, Appl. Math. Lett., 89, 41, 10.1016/j.aml.2018.09.014
Li, 2016, A new Brauer-type eigenvalue localization set for tensors, Linear Multilinear Algebra, 64, 727, 10.1080/03081087.2015.1119779
De Jong, 2015, A database to enable discovery and design of piezoelectric materials, Sci. Data, 2