A new C-eigenvalue interval for piezoelectric-type tensors

Applied Mathematics Letters - Tập 100 - Trang 106035 - 2020
Wenjie Wang1, Haibin Chen1, Yiju Wang1
1School of Management Science, Qufu Normal University, Rizhao, Shandong 276800, China

Tài liệu tham khảo

Curie, 1880, Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bull. Minéral., 3, 90 Lippmann, 1881, Principe de la conservation de l’électricité, Ann. Chim. Phys., 24, 145 Curie, 1881, Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées, C. R., 93, 1137 Kholkin, 2008, Piezoelectricity and crystal symmetry, 17 Haussühl, 2008 Lovett, 1999 Nye, 1985 Gaeta, 2016, Octupolar order in three dimensions, Eur. Phys. J. E, 39, 113, 10.1140/epje/i2016-16113-7 Jerphagnon, 1970, Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities, Phys. Rev. B, 2, 1091, 10.1103/PhysRevB.2.1091 Kulagin, 2004, Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and LiNbO3 nonlinear optical crystals, Quantum Electron., 34, 657, 10.1070/QE2004v034n07ABEH002823 Geřsgorin, 1931, Uber die abgrenzung der eigenwerte einer matrix, Izv. Akad. Nauk SSSR Ser. Mat., 749 Varga, 2004 Sang, 2019, A new Brauer-type Z-eigenvalue inclusion set for tensors, Numer. Algorithms, 80, 781, 10.1007/s11075-018-0506-2 Chen, 2017, Spectral analysis of piezoelectric tensors, J. Phys. A, 51 Qi, 2005, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40, 1302, 10.1016/j.jsc.2005.05.007 Li, 2019, C-eigenvalues intervals for piezoelectric-type tensors, Appl. Math. Comput., 358, 244 Che, 2019, C-eigenvalue inclusion theorems for piezoelectric-type tensors, Appl. Math. Lett., 89, 41, 10.1016/j.aml.2018.09.014 Li, 2016, A new Brauer-type eigenvalue localization set for tensors, Linear Multilinear Algebra, 64, 727, 10.1080/03081087.2015.1119779 De Jong, 2015, A database to enable discovery and design of piezoelectric materials, Sci. Data, 2