A natural map in local cohomology
Tóm tắt
Let R be a Noetherian ring,
$\mathfrak{a}$
an ideal of R, M an R-module and n a non-negative integer. In this paper we first study the finiteness properties of the kernel and the cokernel of the natural map
$f\colon\operatorname{Ext}^{n}_{R}(R/\mathfrak{a},M)\to \operatorname{Hom}_{R}(R/\mathfrak{a},\mathrm{H}^{n}_{\mathfrak{a}}(M))$
, under some conditions on the previous local cohomology modules. Then we get some corollaries about the associated primes and Artinianness of local cohomology modules. Finally we will study the asymptotic behavior of the kernel and the cokernel of the natural map in the graded case.
Tài liệu tham khảo
Asadollahi, J., Khashyarmanesh, K. and Salarian, S., A generalization of the cofiniteness problem in local cohomology modules, J. Aust. Math. Soc.75 (2003), 313–324.
Asadollahi, J. and Schenzel, P., Some results on associated primes of local cohomology modules, Japan J. Math.29 (2003), 285–296.
Brodmann, M. P., Asymptotic behavior of cohomology: tameness, supports and associated primes, in Commutative Algebra and Algebraic Geometry (Bangalore, 2003 ), Contemp. Math. 390, pp. 31–61, Amer. Math. Soc., Providence, RI, 2005.
Brodmann, M. P., Rotthaus, C. and Sharp, R. Y., On annihilators and associated primes of local cohomology modules, J. Pure Appl. Algebra153 (2000), 197–227.
Brodmann, M. P. and Sharp, R. Y., Local Cohomology : An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.
Dibaei, M. T. and Nazari, A., Graded local cohomology: attached and associated primes, asymptotic behaviors, Comm. Algebra35 (2007), 1567–1576.
Dibaei, M. T. and Yassemi, S., Associated primes and cofiniteness of local cohomology modules, Manuscripta Math.117 (2005), 199–205.
Dibaei, M. T. and Yassemi, S., Associated primes of the local cohomology modules, in Abelian Groups, Rings, Modules, and Homological Algebra, pp. 49–56, Chapman and Hall/CRC, London, 2006.
Divaani-Aazar, K. and Mafi, A., Associated primes of local cohomology modules, Proc. Amer. Math. Soc.133 (2005), 655–660.
Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorème de Lefschetz locaux et globaux (SGA 2), North-Holland, Amsterdam, 1968.
Hartshorne, R., Affine duality and cofiniteness, Invent. Math.9 (1970), 145–164.
Huneke, C., Problems on local cohomology, in Free Resolutions in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990 ), pp. 93–108, Jones and Bartlett, Boston, MA, 1992.
Marley, M., The associated primes of local cohomology modules over rings of small dimension, Manuscripta Math.104 (2001), 519–525.
Melkersson, L., Modules cofinite with respect to an ideal, J. Algebra285 (2005), 649–668.
Rotman, J., An Introduction to Homological Algebra, Academic Press, New York, 1979.