A nanoparticle in plasma

Plasma Physics Reports - Tập 35 - Trang 494-498 - 2009
Yu. V. Martynenko1, M. Yu. Nagel’1, M. A. Orlov1
1Russian Research Centre Kurchatov Institute, Moscow, Russia

Tóm tắt

Charge and energy fluxes onto a nanoparticle under conditions typical of laboratory plasmas are investigated theoretically. Here, by a nanoparticle is meant a grain the size of which is much smaller than both the electron Larmor radius and Debye length and the thermionic emission from which is not limited by the space charge. Under conditions at which thermionic emission plays an important role, the electric potential and temperature T p of a nanoparticle are determined by solving a self-consistent set of equations describing the balance of energy and charge fluxes onto the nanoparticle. It is shown that, when the degree of plasma ionization exceeds a critical level, the potential of the nanoparticle and the energy flux onto it increase with increasing nanoparticle temperature, so that, starting from a certain temperature, the nanoparticle potential becomes positive. The critical degree of ionization starting from which the potential of a nanoparticle is always positive is determined as a function of the plasma density and electron temperature. The nanoparticle temperature T p corresponding to the equilibrium state of a positively charged nanoparticle is found as a function of the electron density for different electron temperatures.

Tài liệu tham khảo

V. E. Fortov, A. V. Ivlev, S. A. Khrapak, et al., Phys. Rep. 421, 1 (2005). A. V. Kozyrev and A. N. Shishkov, Pis’ma Zh. Tekh. Fiz. 28, 33 (2002) [Tech. Phys. Lett. 28, 504 (2002)]. V. N. Tsytovich and J. Winter, Usp. Fiz. Nauk 168, 899 (1998) [Phys. Usp. 41, 815 (1998)]. B. A. Vershok, A. B. Dormashev, I. Ya. Margulev, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 31 (2006). B. M. Smirnov, Usp. Fiz. Nauk 173, 609 (2003) [Phys. Usp. 46, 589 (2003)]. L. I. Ognev, Pis’ma Zh. Tekh. Fiz. 33(22), 64 (2007) [Tech. Phys. Lett. 33, 972 (2007)]. S. I. Popel, A. A. Gisko, A. P. Golub’, et al., Fiz. Plazmy 27, 831 (2001) [Plasma Phys. Rep. 27, 785 (2001)]. A. I. Morozov and V. V. Savel’ev, Fiz. Plazmy 30, 330 (2004) [Plasma Phys. Rep. 30, 299 (2004)]. A. A. Samarian, O. S. Vaulina, A. P. Nefedov, et al., Phys. Rev. E 64, 056 407 (2001). I. Yu. Veselova and V. A. Rozhanskii, Fiz. Plazmy 17, 1411 (1991) [Sov. J. Plasma Phys. 17, 817 (1991)]. B. V. Kuteev, V. Yu. Sergeev, and L. D. Tsendin, Fiz. Plazmy 10, 1172 (1984) [Plasma Phys. Rep. 10, 675 (1984)]. Yu. V. Martynenko and L. I. Ognev, Zh. Tekh. Fiz. 75(11), 130 (2005) [Tech. Phys. 50, 1522 (2005)]. V. L. Granovskii, Electrical Current in Gas (Gostekhteoretizdat, Moscow, 1952), Vol. 1 [in Russian]. L. D. Landau and E. M. Lifshitz, Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976). A. M. Ignatov, Fiz. Plazmy 28, 919 (2002) [Plasma Phys. Rep. 28, 847 (2002)]. G. H. P. M. Swinkels, H. Kersten, H. Deutsch, and G. M. W. Kroesen, J. Appl. Phys. 88, 1747 (2000). S. I. Anisimov, Ya. A. Imas, G. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals (Nauka, Moscow, 1970) [in Russian]. D. J. E. Daugherty and D. B. Graves, J. Vac. Sci. Technol. A 11, 1126 (1993). V. I. Vishnyakov and G. S. Dragan, Phys. Rev. 74, 036404 (2006).