Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đầu dò nanocomposite polydopamine/polyme dập khuôn phân tử/chấm lượng tử để phát hiện vi lượng sarafloxacin trong thịt gà
Tóm tắt
Một cảm biến quang học nano dựa trên hiện tượng dập tắt huỳnh quang của đầu dò tổng hợp đã được chế tạo để phát hiện sarafloxacin. Thành phần của đầu dò huỳnh quang nanocomposite bao gồm một vật liệu có ái lực cao là polymer polydopamine (PDA), một vật liệu chọn lọc là polymer dập khuôn phân tử (MIP), và các chấm lượng tử nhạy quang (QDs). Đầu dò huỳnh quang nanocomposite phát triển đã cho thấy tính chọn lọc và nhạy cao với sarafloxacin. Polymer dập khuôn phân tử có hệ số dập khuôn (IF) là 8,18 và đã tạo ra một đầu dò dập tắt huỳnh quang hiệu quả hơn so với đầu dò không dập khuôn (NIP). Cường độ phát xạ của đầu dò MIP đã bị dập tắt tuyến tính bởi sarafloxacin trong một khoảng từ 0,10 đến 15,0 μg L−1 với hệ số xác định (R2) là 0,9966. Cảm biến quang học đã phát hiện sarafloxacin trong mẫu thịt gà với độ phục hồi dao động từ 82,8 đến 99,1% với độ lệch chuẩn dưới 3%. Nồng độ tìm thấy trong các mẫu đã được so sánh tốt với độ phục hồi đạt được bằng phương pháp phát hiện HPLC. Cảm biến nano này đơn giản để vận hành, chi phí thấp và thủ tục phân tích nhanh.
Từ khóa
#Cảm biến nano #sarafloxacin #thịt gà #huỳnh quang dập tắt #polymer dập khuôn phân tử #chấm lượng tửTài liệu tham khảo
Zhao SJ, Li C, Jiang HY, Li BY, Shen JZ. Simultaneous determination of 7 quinolones residues in animal muscle tissues by high performance liquid chromatography. Chin J Anal Chem. 2007;35:786–90.
Annunziata L, Visciano P, Stramenga A, Colagrande MN, Campana G, Scortichini G, et al. Development and validation of a method for the determination of quinolones in muscle and eggs by liquid chromatography-tandem mass spectrometry. Food Anal Methods. 2016;9:2308–20.
Barrón D, Jiménez-Lozano E, Bailac S, Barbosa J. Determination of difloxacin and sarafloxacin in chicken muscle using solid-phase extraction and capillary electrophoresis. J Chromatogr B. 2002;767:313–9.
Christodoulou EA, Samanidou VF, Papadoyannis IN. Validation of an HPLC-UV method according to the european union decision 2002/657/EC for the simultaneous determination of 10 quinolones in chicken muscle and egg yolk. J Chromatogr B. 2007;859:246–55.
Urraca JL, Castellari M, Barrios CA, Moreno-Bondi MC. Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by molecularly imprinted solid-phase extraction and high performance liquid chromatography. J Chromatogr A. 2014;1343:1–9.
Yan Z, Zhang Z, Yu Y, Liu Z, Chen J. Chemiluminescence determination of potassium bromate in flour based on flow injection analysis. Food Chem. 2016;190:20–4.
Xia Q, Yang Y, Liu M. Aluminium sensitized spectrofluorimetric determination of fluoroquinolones in milk samples coupled with salting-out assisted liquid-liquid ultrasonic extraction. Spectrochim Acta A. 2012;96:358–64.
Sorouraddin MH, Iranifam M, Imani-Nabiyyi A. Study of the enhancement of a new chemiluminescence reaction and its application to determination of beta-lactam antibiotics. Luminescence. 2009;24:102–7.
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5:763–75.
Bunkoed O, Kanatharana P. Mercaptopropionic acid-capped CdTe quantum dots as fluorescence probe for the determination of salicylic acid in pharmaceutical products. Luminescence. 2015;30:1083–9.
Montoro Bustos AR, Garcia-Cortes M, Gonzalez-Iglesias H, Ruiz Encinar J, Costa-Fernandez JM, Coca-Prados M, et al. Sensitive targeted multiple protein quantification based on elemental detection of quantum dots. Anal Chim Acta. 2015;879:77–84.
Nurerk P, Kanatharana P, Bunkoed O. A selective determination of copper ions in water samples based on the fluorescence quenching of thiol-capped CdTe quantum dots. Luminescence. 2016;31:515–22.
Rocha TL, Saboia-Morais SM, Bebianno MJ. Histopathological assessment and inflammatory response in the digestive gland of marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots. Aquat Toxicol. 2016;177:306–15.
Wei X, Hao T, Xu Y, Lu K, Li H, Yan Y, et al. Facile polymerizable surfactant inspired synthesis of fluorescent molecularly imprinted composite sensor via aqueous CdTe quantum dots for highly selective detection of λ-cyhalothrin. Sensors Actuators B Chem. 2016;224:315–24.
Zhou J, Liu Y, Tang J, Tang W. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater Today. 2017;20:360–76.
Huy BT, Kumar AP, Seo MH, Kim JD, Lee YI. Controllable synthesis of thiol-capped CdTe nanoparticles for optical sensing of triethylenetetramine dihydrochloride. J Nanosci Nanotechnol. 2014;14:7662–7.
Tan L, Guo M, Tan J, Geng Y, Huang S, Tang Y, et al. Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ. Sensors Actuators B Chem. 2019;291:226–34.
Belbruno JJ. Molecularly imprinted polymers. Chem Rev. 2019;119:94–119.
Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptormimics for selective cell recognition. Chem Soc Rev. 2018;47:5574–87.
Chao MR, Hu CW, Chen JL. Glass substrates crosslinked with tetracycline-imprinted polymeric silicate and CdTe quantum dots as fluorescent sensors. Anal Chim Acta. 2016;925:61–9.
Yin Y, Li H, Zhu L, Guo T, Li X, Xing W, et al. A durable mesh decorated with polydopamine/graphene oxide for highly efficient oil/water mixture separation. Appl Surf Sci. 2019;479:351–9.
Li Y, Zhao R, Chao S, Sun B, Wang C, Li X. Polydopamine coating assisted synthesis of MnO2 loaded inorganic/organic composite electrospun fiber adsorbent for efficient removal of Pb2+ from water. Chem Eng J. 2018;344:277–89.
Zhai Y, Whitten JJ, Zetterlund PB, Granville AM. Synthesis of hollow polydopamine nanoparticles using miniemulsion templating. Polym J. 2016;105:276–83.
Sheng W, Li W, Zhang G, Tong Y, Liu Z, Jia X. Study on the UV-shielding and controlled-release properties of a polydopamine coating for avermectin. New J Chem. 2015;4:2752–7.
Zhi K, Wang L, Zhang Y, Jiang Y, Zhang L, Yasin A. Influence of size and shape of silica supports on the sol–gel surface molecularly imprinted polymers for selective adsorption of gossypol. Materials. 2018;11:777.
Ensafi AA, Nasr-Esfahani P, Rezaei B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sensors Actuators B Chem. 2018;257:889–96.
Ren X, Chen L. Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples. Anal Bioanal Chem. 2015;407:8087–95.
Zhang L, Chen L. Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer. Microchim Acta. 2018;185:135–43.
Miao Y, Sun X, Lv J, Yan G. Phosphorescent mesoporous surface imprinting microspheres: preparation and application for transferrin recognition from biological fluids. ACS Appl Mater Interfaces. 2019;11:2264–72.
Yu H, Tao Y, Chen D, Pan Y, Liu Z, Wang Y, et al. Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction. J Chromatogr B. 2012;885–6:150–9.
Rodriguez Caceres MI, Guiberteau Cabanillas A, Galeano Diaz T, Martinez Canas MA. Simultaneous determination of quinolones for veterinary use by high-performance liquid chromatography with electrochemical detection. J Chromatogr B. 2010;878:398–402.
Roudaut B, Yorke JC. High-performance liquid chromatographic method with fluorescence detection for the screening and quantification of oxolinic acid, flumequine and sarafloxacin in fish. J Chromatogr B. 2002;780:481–5.
Cohen E, Maxwell RJ, Donoghue DJ. Automated multi-residue isolation of fluoroquinolone antimicrobials from fortified and incurred chicken liver using on-line microdialysis and high-performance liquid chromatography with programmable fluorescence detection. J Chromatogr B. 1999;724:137–45.
Monteiro SH, Francisco JG, Campion TF, Pimpinato RF, Moura Andrade GCR, Garcia F, et al. Multiresidue antimicrobial determination in Nile tilapia (Oreochromis niloticus) cage farming by liquid chromatography tandem mass spectrometry. Aquaculture. 2015;447:37–43.
Samanidou V, Evaggelopoulou E, Trotzmuller M, Guo X, Lankmayr E. Multi-residue determination of seven quinolones antibiotics in gilthead seabream using liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2008;1203:115–23.
Moreno-Gonzalez D, Lara FJ, Gamiz-Gracia L, Garcia-Campana AM. Molecularly imprinted polymer as in-line concentrator in capillary electrophoresis coupled with mass spectrometry for the determination of quinolones in bovine milk samples. J Chromatogr A. 2014;1360:1–8.
Lombardo-Agui M, Garcia-Campana AM, Gamiz-Gracia L, Cruces Blanco C. Laser induced fluorescence coupled to capillary electrophoresis for the determination of fluoroquinolones in foods of animal origin using molecularly imprinted polymers. J Chromatogr A. 2010;1217:2237–42.
Evaggelopoulou EN, Samanidou VF. HPLC confirmatory method development for the determination of seven quinolones in salmon tissue (Salmo salar L.) validated according to the European Union Decision 2002/657/EC. Food Chem. 2013;136:479–84.