A nano-power sub-bandgap voltage and current reference topology with no amplifier
Tài liệu tham khảo
Lee, 2021, Current Reference Circuits: A Tutorial, IEEE Trans Circuits Syst II: Express Briefs
Liu, 2020, A high-order curvature compensated voltage reference based on lateral BJT, AEU-Int J Electron Commun, 124, 10.1016/j.aeue.2020.153325
Pereira-Rial, 2021, A 0.6 V, ultra-low power, 1060 μm2 self-biased PTAT voltage generator for implantable biomedical devices, AEU-Int J Electron Commun, 137
Mohammed, 2016, Design methodology for MOSFET-based voltage reference circuits implemented in 28 nm CMOS technology, AEU-Int J Electron Commun, 70, 568, 10.1016/j.aeue.2016.01.008
Kroh, 2016, Monolithic photonic-electronic linear direct detection receiver for 56Gbps OOK, 1
Nagulapalli, 2017, A CMOS blood cancer detection sensor based on frequency deviation detection, Analog Integr Circ Sig Process, 92, 437, 10.1007/s10470-017-1008-1
Nagulapalli, 2017, International conference on Microelectronic Devices, Circuits Syst (ICMDCS), 2017, 1
Mai A, Garcia Lopez I, Rito P, Nagulapalli R, Awny A, Elkhouly M et al. High-speed SiGe BiCMOS technologies and circuits. In: Scaling and integration of high-speed electronics and optomechanical systems. World Scientific; 2017. p. 77–98.
Pouya, 2015, A low-voltage high-speed high-linearity MOSFET-only analog bootstrapped switch for sample-and-hold circuits, 418
Aminzadeh, 2011, Low-dropout regulators: Hybrid-cascode compensation to improve stability in nano-scale CMOS technologies, IEEE International Symposium of Circuits and Systems (ISCAS), 2293
Giustolisi, 2003, A low-voltage low-power voltage reference based on subthreshold MOSFETs, IEEE J Solid-State Circuits, 38, 151, 10.1109/JSSC.2002.806266
Aminzadeh, 2020, All–MOS self-powered subthreshold voltage reference with enhanced line regulation, AEU-Int J Electron Commun, 122, 10.1016/j.aeue.2020.153245
Osipov, 2019, Compact extended industrial range CMOS current references, IEEE Trans Circuits Syst I Regul Pap, 66, 1998, 10.1109/TCSI.2019.2892182
Aminzadeh, 2020, Self-biased nano-power four-transistor current and voltage reference with a single resistor, Electron Lett, 56, 282, 10.1049/el.2019.3671
Hu, 2021, A novel precision CMOS current reference for IoT systems, AEU-Int J Electron Commun, 130, 10.1016/j.aeue.2020.153577
Crupi, 2018, A portable class of 3-transistor current references with low-power sub-0.5 V operation, Int J Circuit Theory Appl, 46, 779, 10.1002/cta.2439
Wang, 2019, A 0.7-V 28-nW CMOS Subthreshold Voltage and Current Reference in One Simple Circuit, IEEE Trans Circuits Syst I Regul Pap, 66, 3457, 10.1109/TCSI.2019.2927240
Aminzadeh, 2021, Subthreshold reference circuit with curvature compensation based on the channel length modulation of MOS devices, Int J Circuit Theory Appl
Aminzadeh, 2009, Low-dropout voltage reference: an approach to low-temperature-sensitivity architectures with high drive capability, Electron Lett, 45, 1200, 10.1049/el.2009.1531
Nagulapalli, 2019, A start-up assisted fully differential folded cascode opamp, J Circ, Syst Comput, 28, 1950164, 10.1142/S0218126619501640
Aminzadeh, 2022, A Methodology to Derive a Symbolic Transfer Function for Multistage Amplifiers, IEEE Access, 10.1109/ACCESS.2022.3147879
Aminzadeh, 2007, Design of two-stage Miller-compensated amplifiers based on an optimized settling model, 171
Aminzadeh, 2009, Design of low-power single-stage operational amplifiers based on an optimized settling model, Analog Integr Circ Sig Process, 58, 153, 10.1007/s10470-008-9226-1
Aminzadeh, 2014, Miller compensation: optimal design for operational amplifiers with a required settling time, Circuits, Syst, Signal Process, 33, 2675, 10.1007/s00034-014-9774-9
Aminzadeh, 2019, Dual loop cascode-Miller compensation with damping factor control unit for three-stage amplifiers driving ultralarge load capacitors, Int J Circuit Theory Appl, 47, 1, 10.1002/cta.2563
Aminzadeh, 2015, Hybrid cascode compensation with current amplifiers for nano-scale three-stage amplifiers driving heavy capacitive loads, Analog Integr Circ Sig Process, 83, 331, 10.1007/s10470-015-0522-2
Zhuang, 2014, A 19-nW 0.7-V CMOS voltage reference with no amplifiers and no clock circuits, IEEE Trans Circuits Syst II Express Briefs, 61, 830
Widlar, 1971, New developments in IC voltage regulators, IEEE J Solid-State Circuits, 6, 2, 10.1109/JSSC.1971.1050151
Brokaw, 1974, A simple three-terminal IC bandgap reference, IEEE J Solid-State Circuits, 9, 388, 10.1109/JSSC.1974.1050532
Huang, 2021, A Sub-200nW All-in-One Bandgap Voltage and Current Reference Without Amplifiers, IEEE Trans Circuits Syst II Express Briefs, 68, 121
Banba, 1999, A CMOS bandgap reference circuit with sub-1-V operation, IEEE J Solid-State Circuits, 34, 670, 10.1109/4.760378
Nagulapalli R, Hayatleh K, Barker S, Zourob S, Yassine N, Naresh Kumar Reddy B. A 31 ppm/°C Pure CMOS Bandgap Reference by Exploiting Beta-Multiplier. In: International symposium on VLSI design and test; 2018. p. 100–108.
Nagulapalli R, Palani RK, Agarwal S, Chatterjee S, Hayatleh K, Barker S. A 15uW, 12 ppm/° C curvature compensated bandgap in 0.85 V supply. In: 2021 IEEE international symposium on circuits and systems (ISCAS); 2021. p. 1-4.
Nagulapalli, 2019, A 0.55 V bandgap reference with a 59 ppm/° C temperature coefficient, J Circuits, Syst Comput, 28, 1950120, 10.1142/S0218126619501202
Wang, 2018, A 0.9-V 33.7-ppm/°C 85-nW Sub-Bandgap Voltage Reference Consisting of Subthreshold MOSFETs and Single BJT, IEEE Trans Very Large Scale Integrat (VLSI) Syst, 26, 2190, 10.1109/TVLSI.2018.2836331
Wang, 2017, Analysis and design of a current-mode bandgap reference with high power supply ripple rejection, Microelectron J, 68, 7, 10.1016/j.mejo.2017.08.011
Sanborn, 2007, A Sub-1-V Low-Noise Bandgap Voltage Reference, IEEE J Solid-State Circuits, 42, 2466, 10.1109/JSSC.2007.907226
Nagulapalli R, Hayatleh K, Barker S, Reddy BNK. A Single BJT 10.2 ppm/° C Bandgap Reference in 45nm CMOS Technology. In: 2020 11th International conference on computing, communication and networking technologies (ICCCNT); 2020. pp. 1–4.
Nagulapalli, 2021, A 24.4 ppm/°C Voltage Mode Bandgap Reference With a 1.05V Supply, IEEE Trans Circuits Syst II Express Briefs, 68, 1088
Kim, 2021, A Single BJT Bandgap Reference With Frequency Compensation Exploiting Mirror Pole, IEEE J Solid-State Circuits, 56, 2902, 10.1109/JSSC.2021.3093583
Seok, 2012, A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V, IEEE J Solid-State Circuits, 47, 2534, 10.1109/JSSC.2012.2206683
Wang, 2020, An 18-nA Ultra-Low-Current Resistor-Less Bandgap Reference for 2.8 V–4.5 V High Voltage Supply Li-Ion-Battery-Based LSIs, IEEE Trans Circuits Syst II Express Briefs, 67, 2382
Qiao, 2021, A-40°C to 140°C Picowatt CMOS Voltage Reference with 0.25-V Power Supply, IEEE Trans Circuits Syst II: Express Briefs
Yu, 2015, An Area-Efficient Current-Mode Bandgap Reference With Intrinsic Robust Start-Up Behavior, IEEE Trans Circuits Syst II Express Briefs, 62, 937
Aminzadeh, 2020, Systematic circuit design and analysis using generalised gm /ID functions of MOS devices, IET Circuits Devices Syst, 14, 432, 10.1049/iet-cds.2019.0209
Zhou, 2018, A resistorless high-precision compensated CMOS bandgap voltage reference, IEEE Trans Circuits Syst I Regul Pap, 66, 428, 10.1109/TCSI.2018.2857821
