A nano-power sub-bandgap voltage and current reference topology with no amplifier

Hamed Aminzadeh1, Mohammad Mahdi Valinezhad1
1Department of Electrical Engineering, Payame Noor University, 19395–3697 Tehran, Iran

Tài liệu tham khảo

Lee, 2021, Current Reference Circuits: A Tutorial, IEEE Trans Circuits Syst II: Express Briefs Liu, 2020, A high-order curvature compensated voltage reference based on lateral BJT, AEU-Int J Electron Commun, 124, 10.1016/j.aeue.2020.153325 Pereira-Rial, 2021, A 0.6 V, ultra-low power, 1060 μm2 self-biased PTAT voltage generator for implantable biomedical devices, AEU-Int J Electron Commun, 137 Mohammed, 2016, Design methodology for MOSFET-based voltage reference circuits implemented in 28 nm CMOS technology, AEU-Int J Electron Commun, 70, 568, 10.1016/j.aeue.2016.01.008 Kroh, 2016, Monolithic photonic-electronic linear direct detection receiver for 56Gbps OOK, 1 Nagulapalli, 2017, A CMOS blood cancer detection sensor based on frequency deviation detection, Analog Integr Circ Sig Process, 92, 437, 10.1007/s10470-017-1008-1 Nagulapalli, 2017, International conference on Microelectronic Devices, Circuits Syst (ICMDCS), 2017, 1 Mai A, Garcia Lopez I, Rito P, Nagulapalli R, Awny A, Elkhouly M et al. High-speed SiGe BiCMOS technologies and circuits. In: Scaling and integration of high-speed electronics and optomechanical systems. World Scientific; 2017. p. 77–98. Pouya, 2015, A low-voltage high-speed high-linearity MOSFET-only analog bootstrapped switch for sample-and-hold circuits, 418 Aminzadeh, 2011, Low-dropout regulators: Hybrid-cascode compensation to improve stability in nano-scale CMOS technologies, IEEE International Symposium of Circuits and Systems (ISCAS), 2293 Giustolisi, 2003, A low-voltage low-power voltage reference based on subthreshold MOSFETs, IEEE J Solid-State Circuits, 38, 151, 10.1109/JSSC.2002.806266 Aminzadeh, 2020, All–MOS self-powered subthreshold voltage reference with enhanced line regulation, AEU-Int J Electron Commun, 122, 10.1016/j.aeue.2020.153245 Osipov, 2019, Compact extended industrial range CMOS current references, IEEE Trans Circuits Syst I Regul Pap, 66, 1998, 10.1109/TCSI.2019.2892182 Aminzadeh, 2020, Self-biased nano-power four-transistor current and voltage reference with a single resistor, Electron Lett, 56, 282, 10.1049/el.2019.3671 Hu, 2021, A novel precision CMOS current reference for IoT systems, AEU-Int J Electron Commun, 130, 10.1016/j.aeue.2020.153577 Crupi, 2018, A portable class of 3-transistor current references with low-power sub-0.5 V operation, Int J Circuit Theory Appl, 46, 779, 10.1002/cta.2439 Wang, 2019, A 0.7-V 28-nW CMOS Subthreshold Voltage and Current Reference in One Simple Circuit, IEEE Trans Circuits Syst I Regul Pap, 66, 3457, 10.1109/TCSI.2019.2927240 Aminzadeh, 2021, Subthreshold reference circuit with curvature compensation based on the channel length modulation of MOS devices, Int J Circuit Theory Appl Aminzadeh, 2009, Low-dropout voltage reference: an approach to low-temperature-sensitivity architectures with high drive capability, Electron Lett, 45, 1200, 10.1049/el.2009.1531 Nagulapalli, 2019, A start-up assisted fully differential folded cascode opamp, J Circ, Syst Comput, 28, 1950164, 10.1142/S0218126619501640 Aminzadeh, 2022, A Methodology to Derive a Symbolic Transfer Function for Multistage Amplifiers, IEEE Access, 10.1109/ACCESS.2022.3147879 Aminzadeh, 2007, Design of two-stage Miller-compensated amplifiers based on an optimized settling model, 171 Aminzadeh, 2009, Design of low-power single-stage operational amplifiers based on an optimized settling model, Analog Integr Circ Sig Process, 58, 153, 10.1007/s10470-008-9226-1 Aminzadeh, 2014, Miller compensation: optimal design for operational amplifiers with a required settling time, Circuits, Syst, Signal Process, 33, 2675, 10.1007/s00034-014-9774-9 Aminzadeh, 2019, Dual loop cascode-Miller compensation with damping factor control unit for three-stage amplifiers driving ultralarge load capacitors, Int J Circuit Theory Appl, 47, 1, 10.1002/cta.2563 Aminzadeh, 2015, Hybrid cascode compensation with current amplifiers for nano-scale three-stage amplifiers driving heavy capacitive loads, Analog Integr Circ Sig Process, 83, 331, 10.1007/s10470-015-0522-2 Zhuang, 2014, A 19-nW 0.7-V CMOS voltage reference with no amplifiers and no clock circuits, IEEE Trans Circuits Syst II Express Briefs, 61, 830 Widlar, 1971, New developments in IC voltage regulators, IEEE J Solid-State Circuits, 6, 2, 10.1109/JSSC.1971.1050151 Brokaw, 1974, A simple three-terminal IC bandgap reference, IEEE J Solid-State Circuits, 9, 388, 10.1109/JSSC.1974.1050532 Huang, 2021, A Sub-200nW All-in-One Bandgap Voltage and Current Reference Without Amplifiers, IEEE Trans Circuits Syst II Express Briefs, 68, 121 Banba, 1999, A CMOS bandgap reference circuit with sub-1-V operation, IEEE J Solid-State Circuits, 34, 670, 10.1109/4.760378 Nagulapalli R, Hayatleh K, Barker S, Zourob S, Yassine N, Naresh Kumar Reddy B. A 31 ppm/°C Pure CMOS Bandgap Reference by Exploiting Beta-Multiplier. In: International symposium on VLSI design and test; 2018. p. 100–108. Nagulapalli R, Palani RK, Agarwal S, Chatterjee S, Hayatleh K, Barker S. A 15uW, 12 ppm/° C curvature compensated bandgap in 0.85 V supply. In: 2021 IEEE international symposium on circuits and systems (ISCAS); 2021. p. 1-4. Nagulapalli, 2019, A 0.55 V bandgap reference with a 59 ppm/° C temperature coefficient, J Circuits, Syst Comput, 28, 1950120, 10.1142/S0218126619501202 Wang, 2018, A 0.9-V 33.7-ppm/°C 85-nW Sub-Bandgap Voltage Reference Consisting of Subthreshold MOSFETs and Single BJT, IEEE Trans Very Large Scale Integrat (VLSI) Syst, 26, 2190, 10.1109/TVLSI.2018.2836331 Wang, 2017, Analysis and design of a current-mode bandgap reference with high power supply ripple rejection, Microelectron J, 68, 7, 10.1016/j.mejo.2017.08.011 Sanborn, 2007, A Sub-1-V Low-Noise Bandgap Voltage Reference, IEEE J Solid-State Circuits, 42, 2466, 10.1109/JSSC.2007.907226 Nagulapalli R, Hayatleh K, Barker S, Reddy BNK. A Single BJT 10.2 ppm/° C Bandgap Reference in 45nm CMOS Technology. In: 2020 11th International conference on computing, communication and networking technologies (ICCCNT); 2020. pp. 1–4. Nagulapalli, 2021, A 24.4 ppm/°C Voltage Mode Bandgap Reference With a 1.05V Supply, IEEE Trans Circuits Syst II Express Briefs, 68, 1088 Kim, 2021, A Single BJT Bandgap Reference With Frequency Compensation Exploiting Mirror Pole, IEEE J Solid-State Circuits, 56, 2902, 10.1109/JSSC.2021.3093583 Seok, 2012, A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V, IEEE J Solid-State Circuits, 47, 2534, 10.1109/JSSC.2012.2206683 Wang, 2020, An 18-nA Ultra-Low-Current Resistor-Less Bandgap Reference for 2.8 V–4.5 V High Voltage Supply Li-Ion-Battery-Based LSIs, IEEE Trans Circuits Syst II Express Briefs, 67, 2382 Qiao, 2021, A-40°C to 140°C Picowatt CMOS Voltage Reference with 0.25-V Power Supply, IEEE Trans Circuits Syst II: Express Briefs Yu, 2015, An Area-Efficient Current-Mode Bandgap Reference With Intrinsic Robust Start-Up Behavior, IEEE Trans Circuits Syst II Express Briefs, 62, 937 Aminzadeh, 2020, Systematic circuit design and analysis using generalised gm /ID functions of MOS devices, IET Circuits Devices Syst, 14, 432, 10.1049/iet-cds.2019.0209 Zhou, 2018, A resistorless high-precision compensated CMOS bandgap voltage reference, IEEE Trans Circuits Syst I Regul Pap, 66, 428, 10.1109/TCSI.2018.2857821