A multiway p-spectral clustering algorithm
Tài liệu tham khảo
Lyzinski, 2014, Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding, Electron. J. Stat., 8, 2905, 10.1214/14-EJS978
Liu, 2013, Spectral co-clustering documents and words using fuzzy K-harmonic means, Int. J. Mach. Learn. Cybern., 4, 75, 10.1007/s13042-012-0077-9
Bian, 2018, Collaborative filtering model for enhancing fingerprint image, IET Image Process., 12, 149, 10.1049/iet-ipr.2017.0059
Luxburg, 2007, Von Luxburg U A tutorial on spectral clustering, Stat. Comput., 17, 395, 10.1007/s11222-007-9033-z
Amghibech, 2003, Eigenvalues of the Discrete p-Laplacian for graphs, Ars Combin., 67, 283
Hu, 2016, Cooperative co-evolutionary artificial bee colony algorithm based onhierarchical communication model, Chin. J. Electron., 25, 570, 10.1049/cje.2016.05.025
Amghibech, 2006, Bounds for the largest p-Laplacian eigenvalue for graphs, Discrete Math., 306, 2762, 10.1016/j.disc.2006.05.012
Dhanjal, 2014, Efficient eigen-updating for spectral graph clustering, Neurocomputing, 131, 440, 10.1016/j.neucom.2013.11.015
Cao, 2014, Local information-based fast approximate spectral clustering, Pattern Recognit. Lett., 38, 63, 10.1016/j.patrec.2013.11.005
Wang, 2017, A mini-review on preference modeling and articulation in multi-objective optimization: Current status and challenges, Complex Intell. Syst., 3, 233, 10.1007/s40747-017-0053-9
Jia, 2015, Self-Tuning p-Spectral clustering based on shared nearest neighbors, Cogn. Comput., 7, 622, 10.1007/s12559-015-9331-2
T. Hler, M. Hein, Spectral clustering based on the graph p-Laplacian. in: International Conference on Machine Learning, ICML 2009, 2009, pp. 11–88.
Yang, 2015, Multitask spectral clustering by exploring intertask correlation, IEEE Trans. Cybern., 45, 1069, 10.1109/TCYB.2014.2344015
Peluffo-Ordóñez, 2012, An improved multi-class spectral clustering based on normalized cuts, 130
Boutsidis, 2015, Spectral clustering via the power method – provably, Comput. Sci., 40
Donath, 1973, Lower bounds for the partitioning of graphs, IBM J. Res. Dev., 17, 420, 10.1147/rd.175.0420
Shi, 1998, Image and video segmentation: The normalized cut framework, vol. 1, 943
Luo, 2010, On the eigenvectors of p-Laplacian, Mach. Learn., 81, 37, 10.1007/s10994-010-5201-z
Macdonald, 1933, Successive approximations by the Rayleigh-Ritz variation method, Phys. Rev., 43, 830, 10.1103/PhysRev.43.830
Ding, 2016, 50
Nascimento, 2011, Spectral methods for graph clustering – A survey, European J. Oper. Res., 211, 221, 10.1016/j.ejor.2010.08.012
Bhissy, 2014, Spectral clustering using optimized Gaussian kernel function, Int. J. Artif. Intell. Appl. Smart Devices, 2, 41
Ng, 2002, On spectral clustering: Analysis and an algorithm, Proc. Adv. Neural Inf. Process. Syst., 14, 849
Jia, 2013, A spectral clustering algorithm based on neighborhood rough sets reduction, J. Nanjing Univ., 49, 619
Zelnik-Manor, 2004, Self-tuning spectral clustering, Adv. Neural Inf. Process. Syst., 17, 1601
Jia, 2014, The latest research progress on spectral clustering, Neural Comput. Appl., 24, 1477, 10.1007/s00521-013-1439-2
W. Xu, X. Liu, Y. Gong, Document clustering based on non-negative matrix factorization, in: Proceedings of the 26th annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2003, pp. 267–273.