A multiway p-spectral clustering algorithm

Knowledge-Based Systems - Tập 164 - Trang 371-377 - 2019
Shifei Ding1,2, Lin Cong1, Qiankun Hu1, Hongjie Jia1,3, Zhongzhi Shi2
1School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100090, China
3School of Computer Science and Communication Engineering, Jiangsu University, ZhenJiang 212013, China

Tài liệu tham khảo

Lyzinski, 2014, Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding, Electron. J. Stat., 8, 2905, 10.1214/14-EJS978 Liu, 2013, Spectral co-clustering documents and words using fuzzy K-harmonic means, Int. J. Mach. Learn. Cybern., 4, 75, 10.1007/s13042-012-0077-9 Bian, 2018, Collaborative filtering model for enhancing fingerprint image, IET Image Process., 12, 149, 10.1049/iet-ipr.2017.0059 Luxburg, 2007, Von Luxburg U A tutorial on spectral clustering, Stat. Comput., 17, 395, 10.1007/s11222-007-9033-z Amghibech, 2003, Eigenvalues of the Discrete p-Laplacian for graphs, Ars Combin., 67, 283 Hu, 2016, Cooperative co-evolutionary artificial bee colony algorithm based onhierarchical communication model, Chin. J. Electron., 25, 570, 10.1049/cje.2016.05.025 Amghibech, 2006, Bounds for the largest p-Laplacian eigenvalue for graphs, Discrete Math., 306, 2762, 10.1016/j.disc.2006.05.012 Dhanjal, 2014, Efficient eigen-updating for spectral graph clustering, Neurocomputing, 131, 440, 10.1016/j.neucom.2013.11.015 Cao, 2014, Local information-based fast approximate spectral clustering, Pattern Recognit. Lett., 38, 63, 10.1016/j.patrec.2013.11.005 Wang, 2017, A mini-review on preference modeling and articulation in multi-objective optimization: Current status and challenges, Complex Intell. Syst., 3, 233, 10.1007/s40747-017-0053-9 Jia, 2015, Self-Tuning p-Spectral clustering based on shared nearest neighbors, Cogn. Comput., 7, 622, 10.1007/s12559-015-9331-2 T. Hler, M. Hein, Spectral clustering based on the graph p-Laplacian. in: International Conference on Machine Learning, ICML 2009, 2009, pp. 11–88. Yang, 2015, Multitask spectral clustering by exploring intertask correlation, IEEE Trans. Cybern., 45, 1069, 10.1109/TCYB.2014.2344015 Peluffo-Ordóñez, 2012, An improved multi-class spectral clustering based on normalized cuts, 130 Boutsidis, 2015, Spectral clustering via the power method – provably, Comput. Sci., 40 Donath, 1973, Lower bounds for the partitioning of graphs, IBM J. Res. Dev., 17, 420, 10.1147/rd.175.0420 Shi, 1998, Image and video segmentation: The normalized cut framework, vol. 1, 943 Luo, 2010, On the eigenvectors of p-Laplacian, Mach. Learn., 81, 37, 10.1007/s10994-010-5201-z Macdonald, 1933, Successive approximations by the Rayleigh-Ritz variation method, Phys. Rev., 43, 830, 10.1103/PhysRev.43.830 Ding, 2016, 50 Nascimento, 2011, Spectral methods for graph clustering – A survey, European J. Oper. Res., 211, 221, 10.1016/j.ejor.2010.08.012 Bhissy, 2014, Spectral clustering using optimized Gaussian kernel function, Int. J. Artif. Intell. Appl. Smart Devices, 2, 41 Ng, 2002, On spectral clustering: Analysis and an algorithm, Proc. Adv. Neural Inf. Process. Syst., 14, 849 Jia, 2013, A spectral clustering algorithm based on neighborhood rough sets reduction, J. Nanjing Univ., 49, 619 Zelnik-Manor, 2004, Self-tuning spectral clustering, Adv. Neural Inf. Process. Syst., 17, 1601 Jia, 2014, The latest research progress on spectral clustering, Neural Comput. Appl., 24, 1477, 10.1007/s00521-013-1439-2 W. Xu, X. Liu, Y. Gong, Document clustering based on non-negative matrix factorization, in: Proceedings of the 26th annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2003, pp. 267–273.