A multiscale framework for high-velocity impact process with combined material point method and molecular dynamics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen, Z., Feng, R., Xin, X. et al.: A computational model for impact failure with shear-induced dilatancy. Int. J. Numer. Methods Eng. 56, 1979–1997 (2003)
Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)
Gong, W.W., Liu, Y., Zhang, X., Ma, H.: Numerical investigation on dynamical response of aluminum foam subject to hypervelocity impact with material point method. CMES Comput. Model. Eng. Sci. 83(5), 527–545 (2012)
Guo, Z., Yang, W.: MPM/MD handshaking method for multiscale simulation and its application to high energy cluster impacts. Int. J. Mech. Sci. 48(2), 145–159 (2006)
Liu, Y., Zhang, X., Sze, K.Y., Wang, M.: Smoothed molecular dynamics for large step time integration. CMES Comput. Model. Eng. Sci. 20(3), 177–192 (2007)
Lu, H., Daphalapurkar, N.P., Wang, B., Roy, S., Komanduri, R.: Multiscale simulation from atomisitic to continuum—coupling molecular dynamics (MD) with the material point method (MPM). Philos. Mag. 86, 2971–2994 (2006)
Ma, S., Zhang, X., Qiu, X.: Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int. J. Impact Eng. 36, 272–282 (2009)
Mitchell, A.C., Nellis, W.J.: Shock compression of aluminum, copper, and tantalum. J. Appl. Phys. 52(5), 3363–3374 (1981)
Pharr, G.M., Oliver, W.C.: Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull. 17(7), 28–33 (1992)
Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)
Rapaport, D.C.: The Art of Molecular Dynamics Simulation, 2nd edn. Cambridge University Press, Cambridge (2004)
Royce, E.B.: A thress-phase equation of state for metals. Tech. rep., Lawrence Livermore National Laboratory (1971)
Shen, L., Chen, Z.: A multi-scale simulation of tungsten film delamination from silicon substrate. Int. J. Solids. Struct. 42, 5036–5056 (2005)
Shen, L., Chen, Z.: A silent boundary scheme with the material point method for dynamic analyses. CMES Comput. Model. Eng. Sci. 7(3), 305–320 (2006)
Shen, L.M.: A rate-dependent damage/decohesion model for simulating glass fragmentation under impact using the material point method. CMES Comput. Model. Eng. Sci. 49, 23-5 (2009)
Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118, 179-196 (1994)
Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236-252 (1995)
Wang, Y., Chen, D.Q., Zhang, X.W.: Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa. Phys. Rev. Lett. 84(15), 3220–3223 (2000)
Zhang, H.W., Wang, K.P., Chen, Z.: Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput. Methods Appl. Mech. Eng. 198, 1456–1472 (2009)
Zhang, X., Liu, Y.: Meshless Methods. Tsinghua University Press, Beijing (2004)
Zhang, X., Sze, K.Y., Ma, S.: An explicit material point finite element method for hyper velocity impact. Int. J. Numer. Methods Eng. 66, 689–706 (2006)
Zukas, J.A.: High Velocity Impact Dynamics. Wiley, New York (1990)