A multiscale-architecture solid oxide fuel cell fabricated by electrophoretic deposition technique
Tài liệu tham khảo
Xu, 2018, Modeling of all porous solid oxide fuel cells, Appl. Energy, 219, 105, 10.1016/j.apenergy.2018.03.037
Xu, 2019, Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design, Appl. Energy, 235, 602, 10.1016/j.apenergy.2018.10.069
Faes, 2009, Redox study of anode-supported solid oxide fuel cell, J. Power Sources, 193, 55, 10.1016/j.jpowsour.2008.12.118
Zeng, 2019, High-performance low-temperature solid oxide fuel cells prepared by sol impregnation, J. Alloys Compd., 810, 151936, 10.1016/j.jallcom.2019.151936
Chen, 2019, Improvement of output performance of solid oxide fuel cell by optimizing the active anode functional layer, Electrochim. Acta, 298, 112, 10.1016/j.electacta.2018.12.078
Lee, 2003, The impact of anode microstructure on the power generating characteristics of SOFC, Solid State Ionics, 158, 225, 10.1016/S0167-2738(02)00915-3
Lee, 2002, Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni–YSZ cermet, Solid State Ionics, 148, 15, 10.1016/S0167-2738(02)00050-4
Casarin, 2015, Influence of processing conditions on the microstructure of NiO-YSZ supporting anode for solid oxide fuel cells, Ceram. Int., 41, 2543, 10.1016/j.ceramint.2014.10.168
Haslam, 2005, Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell, J. Am. Ceram. Soc., 88, 513, 10.1111/j.1551-2916.2005.00097.x
Ai, 2007, Effects of anode surface modification on the performance of low temperature SOFCs, J. Power Sources, 171, 489, 10.1016/j.jpowsour.2007.06.055
Wang, 2009, Improved SOFC performance with continuously graded anode functional layer, Electrochem. Commun., 11, 1120, 10.1016/j.elecom.2009.03.027
Song, 2018, Quantification of the degradation of Ni-YSZ anodes upon redox cycling, J. Power Sources, 374, 61, 10.1016/j.jpowsour.2017.11.024
Shimura, 2014, Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles, J. Power Sources, 267, 58, 10.1016/j.jpowsour.2014.04.152
Schuh, 2006, Nanoindentation studies of materials, Mater. Today, 9, 32, 10.1016/S1369-7021(06)71495-X
Subotić, 2018, Towards practicable methods for carbon removal from Ni-YSZ anodes and restoring the performance of commercial-sized ASC-SOFCs after carbon deposition induced degradation, Energy Convers. Manag., 178, 343, 10.1016/j.enconman.2018.10.022
Itagaki, 2012, Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell, J. Power Sources, 214, 153, 10.1016/j.jpowsour.2012.04.079
Barbucci, 2008, Influence of electrode thickness on the performance of composite electrodes for SOFC, J. Appl. Electrochem., 38, 939, 10.1007/s10800-008-9500-z
Guo, 2013, An all porous solid oxide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs, Energy Environ. Sci., 6, 2119, 10.1039/c3ee40131f
Guizard, 2005, Synthesis and oxygen transport characteristics of dense and porous cerium/gadolinium oxide materials: interest in membrane reactors, Catal. Today, 104, 120, 10.1016/j.cattod.2005.03.046
Wang, 2019, A direct carbon solid oxide fuel cell stack on a single electrolyte plate fabricated by tape casting technique, J. Alloys Compd., 794, 294, 10.1016/j.jallcom.2019.04.263
Xue, 2019, Study on the fracture behavior of the planar-type solid oxide fuel cells, J. Alloys Compd., 782, 355, 10.1016/j.jallcom.2018.12.203
Wei, 2019, A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique, Int. J. Hydrogen Energy, 44, 6182, 10.1016/j.ijhydene.2019.01.071
Oskouyi, 2019, Pulsed constant voltage electrophoretic deposition of YSZ electrolyte coating on conducting porous Ni–YSZ cermet for SOFCs applications, J. Alloys Compd., 785, 220, 10.1016/j.jallcom.2019.01.166
Das, 2017, Nanostructured zirconia thin film fabricated by electrophoretic deposition technique, J. Alloys Compd., 693, 1220, 10.1016/j.jallcom.2016.10.088
Bhosale, 2009, Studies on electrophoretic deposition of nanocrystalline SDC electrolyte films, J. Alloys Compd., 484, 795, 10.1016/j.jallcom.2009.05.047
Hosomi, 2007, Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO–YSZ composite substrate for intermediate temperature SOFC, J. Eur. Ceram. Soc., 27, 173, 10.1016/j.jeurceramsoc.2006.04.175
Besra, 2007, Electrophoretic deposition on non-conducting substrates: the case of YSZ film on NiO–YSZ composite substrates for solid oxide fuel cell application, J. Power Sources, 173, 130, 10.1016/j.jpowsour.2007.04.061
Salehzadeh, 2019, Electrophoretic Deposited Ni (OH) 2-YSZ and NiO-YSZ Nanocomposite Coatings, Microstructural and Electrochemical Evaluation, Surf. Coating. Technol.
Salehzadeh, 2020, Enhanced protective properties of hydrothermally synthesized Ni (OH) 2-YSZ/reduced graphene oxide (rGO) nanocomposite coating, Diam. Relat. Mater., 101, 10.1016/j.diamond.2019.107655
Jia, 2006, Preparation of YSZ film by EPD and its application in SOFCs, J. Alloys Compd., 424, 299, 10.1016/j.jallcom.2005.12.065
Yang, 2007, Characterization of the yttria-stabilized zirconia thin film electrophoretic deposited on La0. 8Sr0. 2MnO3 substrate, J. Alloys Compd., 436, 351, 10.1016/j.jallcom.2006.07.069
Changrong, 1999, Sol–gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide, J. Membr. Sci., 162, 181, 10.1016/S0376-7388(99)00137-4
Long, 2010, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide, Langmuir, 26, 16096, 10.1021/la102425a
Besra, 2006, Preparation of NiO-YSZ/YSZ bi-layers for solid oxide fuel cells by electrophoretic deposition, J. Power Sources, 160, 207, 10.1016/j.jpowsour.2005.12.090
Besra, 2006, Electrophoretic deposition of YSZ particles on non-conducting porous NiO–YSZ substrates for solid oxide fuel cell applications, J. Am. Ceram. Soc., 89, 3003, 10.1111/j.1551-2916.2006.01015.x
Talebi, 2010, Investigation on microstructures of NiO–YSZ composite and Ni–YSZ cermet for SOFCs, Int. J. Hydrogen Energy, 35, 9440, 10.1016/j.ijhydene.2010.04.156
Osinkin, 2014, Thermal expansion, gas permeability, and conductivity of Ni-YSZ anodes produced by different techniques, J. Solid State Electrochem., 18, 149, 10.1007/s10008-013-2239-4
Vollath, 2006, Phases and phase transformations in nanocrystalline ZrO 2, J. Nanoparticle Res., 8, 1003, 10.1007/s11051-006-9116-3
Steil, 1997, Densification of yttria-stabilized zirconia impedance spectroscopy analysis, J. Electrochem. Soc., 144, 390, 10.1149/1.1837416
Hanifi, 2016, Tailoring the microstructure of a solid oxide fuel cell anode support by calcination and milling of YSZ, Sci. Rep., 6, 27359, 10.1038/srep27359
Laguna-Bercero, 2012, Recent advances in high temperature electrolysis using solid oxide fuel cells: a review, J. Power Sources, 203, 4, 10.1016/j.jpowsour.2011.12.019
Brown, 2000, Structure/performance relations for Ni/Yttria-stabilized zirconia anodes for solid oxide fuel cells, J. Electrochem. Soc., 147, 475, 10.1149/1.1393220
Chan, 2001, Anode micro model of solid oxide fuel cell, J. Electrochem. Soc., 148, A388, 10.1149/1.1357174
Pratihar, 2005, Processing microstructure property correlation of porous Ni–YSZ cermets anode for SOFC application, Mater. Res. Bull., 40, 1936, 10.1016/j.materresbull.2005.06.002
Liu, 2003, Operation of anode-supported solid oxide fuel cells on methane and natural gas, Solid State Ionics, 158, 11, 10.1016/S0167-2738(02)00769-5
Oh, 2012, Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD), Adv. Mater., 24, 3373, 10.1002/adma.201200505
Oskouyi, 2019, Preparation of YSZ electrolyte coating on conducting porous Ni–YSZ cermet by DC and pulsed constant voltage electrophoretic deposition process for SOFCs applications, J. Alloys Compd., 795, 361, 10.1016/j.jallcom.2019.04.334
Antunes, 2010, Geometrical optimization of double layer LSM/LSM-YSZ cathodes by electrochemical impedance spectroscopy, J. Fuel Cell Sci. Technol., 7, 10.1115/1.3117606
Shi, 2017, Dense thin YSZ electrolyte films prepared by a vacuum slurry deposition technique for SOFCs, Ceram. Int., 43, 182, 10.1016/j.ceramint.2016.09.131