A multiplicative approach for nonlinear electro-elasticity

S. Skatulla1, C. Sansour2, A. Arockiarajan3
1CERECAM, Department of Civil Engineering, The University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
2Department of Civil Engineering, INSA Rennes, France
3Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, 600 036, India

Tài liệu tham khảo

Anand, 1996, A constitutive model for compressible elastomeric solids, Comput. Mech., 18, 339, 10.1007/BF00376130 Arruda, 1998, A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials, J. Mech. Phys. Solids, 41, 389, 10.1016/0022-5096(93)90013-6 Bar-Cohen, 2004 Belytschko, 1994, Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg., 2, 519, 10.1088/0965-0393/2/3A/007 Benedetti, 2010, A fast bem for the analysis of damaged structures with bonded piezoelectric sensors, Comput. Methods Appl. Mech. Engrg., 199, 490, 10.1016/j.cma.2009.09.007 Besseling, 1968 Bustamante, 2008 Bustamante, 2009, On electric body forces and maxwell stresses in nonlinearly electroelastic solids, Int. J. Engrg. Sci., 47, 1131, 10.1016/j.ijengsci.2008.10.010 Dorfmann, 2005, Nonlinear electroelasticity, Acta Mech., 174, 167, 10.1007/s00707-004-0202-2 Dorfmann, 2010, Nonlinear electroelasticity: incremental equations and stability, Int. J. Engrg. Sci., 48, 1, 10.1016/j.ijengsci.2008.06.005 Ericksen, 2007, Theory of elastic dielectrics revisited, Arch. Ration. Mech. Anal., 183, 299, 10.1007/s00205-006-0042-4 Fox, 2008, On the dynamic electromechanical loading of dielectric elastomer membranes, J. Mech. Phys. Solids, 56, 2669, 10.1016/j.jmps.2008.03.007 Griffiths, 1999 Jackson, 1999 Keplinger, 2008, Capacitive extensometry for transient strain analysis of dielectric elastomer actuators, Appl. Phys. Lett., 92 Kovetz, 2000 Lancaster, 1981, Surface generated by moving least square methods, Math. Comput., 37, 141, 10.1090/S0025-5718-1981-0616367-1 Lee, 1969, Elastic-plastic deformation at finite strains, ASME J. Appl. Mech., 36, 1, 10.1115/1.3564580 Li, 2007, Modeling of ionic transport in electric-stimulus-responsive hydrogels, J. Membr. Sci., 289, 284, 10.1016/j.memsci.2006.12.011 Liu, 1995, Wavelet and multiple scale reproducing kernel methods, J. Numer. Methods Fluids, 21, 901, 10.1002/fld.1650211010 Maugin, 1988 McMeeking, 2005, Electrostatic forces and stored energy for deformable dielectric materials, J. Appl. Mech., 72, 581, 10.1115/1.1940661 Newnham, 2005 Ogden, 1984 Rinaldi, 2002, Body versus surface forces in continuum mechanics: is the maxwell stress tensor a physically objective cauchy stress?, Phys. Rev. E, 65, 036615, 10.1103/PhysRevE.65.036615 D. Rosato, C. Miehe, On the formulation and numerical implementation of dissipative electro-mechanics at large strains, in: Proceedings of Applied Mathematics and Mechanics, vol. 9, 2009, pp. 343–344. Sahoo, 2001, Actuators based on electroactive polymers, Curr. Sci., 81, 743 Sansour, 2003, On the performance of enhanced strain finite elements in large strain deformations of elastic shells, Int. J. Comput.-Aided Engrg. Software, 20, 875, 10.1108/02644400310502027 Sansour, 1998, Large viscoplastic deformations of shells. theory and finite element formulation, Comput. Mech., 21, 512, 10.1007/s004660050329 Sansour, 2010 Schurig, 2005, Relaxation in multi-mode plasticity with a rate-potential, Comput. Mater. Sci., 524, 10.1016/j.commatsci.2004.09.012 Shahinpoor, 1994, Continuum electromechanics of ionic polymeric gels as artificial muscles for robotic applications, Smart Mater. Struct., 3, 367, 10.1088/0964-1726/3/3/012 Shahinpoor, 1998, Ionic, polymer-metal composites (ipmcs) as biomimetic sensors, actuators and artificial muscles - a review, Smart Mater. Struct., 7, 15, 10.1088/0964-1726/7/6/001 Simo, 1988, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part i. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66, 199, 10.1016/0045-7825(88)90076-X Skatulla, 2009, A nonlinear generalized continuum approach for electro-elasticity including scale effects, J. Mech. Phys. Solids, 57, 137, 10.1016/j.jmps.2008.09.014 Skatulla, 2008, Essential boundary conditions in meshfree methods via a modified variational principle. applications to shell computations, Comput. Assist. Mech. Engrg. Sci., 15, 123 S. Skatulla, C. Sansour, A. Arunachalakasi, On the modelling and decomposition of gradient enhanced electro-mechanically coupled deformation, in: Proceedings of the XXII International Congress of Theoretical and Applied Mechanics, Adelaide, Australia, 2008. Smith, 2005 Suo, 2010, Theory of dielectric elastomers, Acta Mech. Sol. Sin., 23, 549, 10.1016/S0894-9166(11)60004-9 Suo, 2008, Nonlinear field theory of deformable dielectrics, J. Mech. Phys. Solids, 56, 467, 10.1016/j.jmps.2007.05.021 Toupin, 1956, The elastic dielectrics, J. Ration. Mech. Anal., 5, 849 Voltairas, 2003, A theoretical study of the hyperelasticity of electro-gels, Proc. Roy. Soc. Math. Phys. Engrg. Sci., 459, 2121, 10.1098/rspa.2003.1124 Vu, 2007, Numerical modelling of non-linear electroelasticity, Int. J. Numer. Methods Engrg., 70, 685, 10.1002/nme.1902 Vujosevic, 2002, Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient, Theor. Appl. Mech., 28–29, 379, 10.2298/TAM0229379V Wisslera, 2005, Modeling of a pre-strained circular actuator made of dielectric elastomers, Sensors Actuators A: Phys., 184, 10.1016/j.sna.2004.11.015 Zhao, 2007, Electromechanical hysteresis and coexistent states in dielectric elastomers, Phys. Rev. B, 76