A multiplicative approach for nonlinear electro-elasticity
Tài liệu tham khảo
Anand, 1996, A constitutive model for compressible elastomeric solids, Comput. Mech., 18, 339, 10.1007/BF00376130
Arruda, 1998, A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials, J. Mech. Phys. Solids, 41, 389, 10.1016/0022-5096(93)90013-6
Bar-Cohen, 2004
Belytschko, 1994, Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg., 2, 519, 10.1088/0965-0393/2/3A/007
Benedetti, 2010, A fast bem for the analysis of damaged structures with bonded piezoelectric sensors, Comput. Methods Appl. Mech. Engrg., 199, 490, 10.1016/j.cma.2009.09.007
Besseling, 1968
Bustamante, 2008
Bustamante, 2009, On electric body forces and maxwell stresses in nonlinearly electroelastic solids, Int. J. Engrg. Sci., 47, 1131, 10.1016/j.ijengsci.2008.10.010
Dorfmann, 2005, Nonlinear electroelasticity, Acta Mech., 174, 167, 10.1007/s00707-004-0202-2
Dorfmann, 2010, Nonlinear electroelasticity: incremental equations and stability, Int. J. Engrg. Sci., 48, 1, 10.1016/j.ijengsci.2008.06.005
Ericksen, 2007, Theory of elastic dielectrics revisited, Arch. Ration. Mech. Anal., 183, 299, 10.1007/s00205-006-0042-4
Fox, 2008, On the dynamic electromechanical loading of dielectric elastomer membranes, J. Mech. Phys. Solids, 56, 2669, 10.1016/j.jmps.2008.03.007
Griffiths, 1999
Jackson, 1999
Keplinger, 2008, Capacitive extensometry for transient strain analysis of dielectric elastomer actuators, Appl. Phys. Lett., 92
Kovetz, 2000
Lancaster, 1981, Surface generated by moving least square methods, Math. Comput., 37, 141, 10.1090/S0025-5718-1981-0616367-1
Lee, 1969, Elastic-plastic deformation at finite strains, ASME J. Appl. Mech., 36, 1, 10.1115/1.3564580
Li, 2007, Modeling of ionic transport in electric-stimulus-responsive hydrogels, J. Membr. Sci., 289, 284, 10.1016/j.memsci.2006.12.011
Liu, 1995, Wavelet and multiple scale reproducing kernel methods, J. Numer. Methods Fluids, 21, 901, 10.1002/fld.1650211010
Maugin, 1988
McMeeking, 2005, Electrostatic forces and stored energy for deformable dielectric materials, J. Appl. Mech., 72, 581, 10.1115/1.1940661
Newnham, 2005
Ogden, 1984
Rinaldi, 2002, Body versus surface forces in continuum mechanics: is the maxwell stress tensor a physically objective cauchy stress?, Phys. Rev. E, 65, 036615, 10.1103/PhysRevE.65.036615
D. Rosato, C. Miehe, On the formulation and numerical implementation of dissipative electro-mechanics at large strains, in: Proceedings of Applied Mathematics and Mechanics, vol. 9, 2009, pp. 343–344.
Sahoo, 2001, Actuators based on electroactive polymers, Curr. Sci., 81, 743
Sansour, 2003, On the performance of enhanced strain finite elements in large strain deformations of elastic shells, Int. J. Comput.-Aided Engrg. Software, 20, 875, 10.1108/02644400310502027
Sansour, 1998, Large viscoplastic deformations of shells. theory and finite element formulation, Comput. Mech., 21, 512, 10.1007/s004660050329
Sansour, 2010
Schurig, 2005, Relaxation in multi-mode plasticity with a rate-potential, Comput. Mater. Sci., 524, 10.1016/j.commatsci.2004.09.012
Shahinpoor, 1994, Continuum electromechanics of ionic polymeric gels as artificial muscles for robotic applications, Smart Mater. Struct., 3, 367, 10.1088/0964-1726/3/3/012
Shahinpoor, 1998, Ionic, polymer-metal composites (ipmcs) as biomimetic sensors, actuators and artificial muscles - a review, Smart Mater. Struct., 7, 15, 10.1088/0964-1726/7/6/001
Simo, 1988, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part i. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66, 199, 10.1016/0045-7825(88)90076-X
Skatulla, 2009, A nonlinear generalized continuum approach for electro-elasticity including scale effects, J. Mech. Phys. Solids, 57, 137, 10.1016/j.jmps.2008.09.014
Skatulla, 2008, Essential boundary conditions in meshfree methods via a modified variational principle. applications to shell computations, Comput. Assist. Mech. Engrg. Sci., 15, 123
S. Skatulla, C. Sansour, A. Arunachalakasi, On the modelling and decomposition of gradient enhanced electro-mechanically coupled deformation, in: Proceedings of the XXII International Congress of Theoretical and Applied Mechanics, Adelaide, Australia, 2008.
Smith, 2005
Suo, 2010, Theory of dielectric elastomers, Acta Mech. Sol. Sin., 23, 549, 10.1016/S0894-9166(11)60004-9
Suo, 2008, Nonlinear field theory of deformable dielectrics, J. Mech. Phys. Solids, 56, 467, 10.1016/j.jmps.2007.05.021
Toupin, 1956, The elastic dielectrics, J. Ration. Mech. Anal., 5, 849
Voltairas, 2003, A theoretical study of the hyperelasticity of electro-gels, Proc. Roy. Soc. Math. Phys. Engrg. Sci., 459, 2121, 10.1098/rspa.2003.1124
Vu, 2007, Numerical modelling of non-linear electroelasticity, Int. J. Numer. Methods Engrg., 70, 685, 10.1002/nme.1902
Vujosevic, 2002, Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient, Theor. Appl. Mech., 28–29, 379, 10.2298/TAM0229379V
Wisslera, 2005, Modeling of a pre-strained circular actuator made of dielectric elastomers, Sensors Actuators A: Phys., 184, 10.1016/j.sna.2004.11.015
Zhao, 2007, Electromechanical hysteresis and coexistent states in dielectric elastomers, Phys. Rev. B, 76
