A multiple inflated negative binomial hurdle regression model: analysis of the Italians’ tourism behaviour during the Great Recession
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alegre J, Mateo S, Pou L (2011) A latent class approach to tourists’ length of stay. Tour Manag 32:555–563
Bargeman B, van der Poel H (2006) The role of routines in the vacation decision-making process of Dutch vacationers. Tour Manag 27(4):707–720
Bernini C, Cracolici MF (2015) Demographic change, tourism expenditure and life cycle behaviour. Tour Manag 47:191–205
Bernini C, Cracolici MF (2016) Is participation in the tourism market an opportunity for everyone? Some evidence from Italy. Tour Econ 22(1):57–79. https://doi.org/10.5367/te.2014.0409
Boto-García D, Baños Pino J, Álvarez A (2019) Determinants of tourists’ Length of Stay: a hurdle count data approach. J Travel Res 58(6):977–994
Bronner F, De Hoog R (2012) Economizing strategies during an economic crisis. Ann Tour Res 39(2):1048–1069. https://doi.org/10.1016/j.annals.2011.11.019
Cai T, Xia Y, Zhou Y (2018) Generalized inflated discrete models: a strategy to work with multimodal discrete distributions. Sociol Methods Res. https://doi.org/10.1177/0049124118782535
Cameron A, Trivedi P (2013) Regression analysis of count data. Cambridge University Press, Cambridge
Cracolici M, Giambona F, Cuffaro M (2013) Family structure and subjective economic well-being: some new evidence. Soc Indic Res 118:433–456
Dolnicar S, Yanamandram V, Cliff K (2012) The contribution of vacations to quality of life. Ann Tour Res 39(1):59–83. https://doi.org/10.1016/j.annals.2011.04.015
Giles DE (2007) Modeling inflated count data. In: MODSIM 2007 international congress on modelling and simulation; Modelling and Simulation Society of Australia and New Zealand. Christchurch, NZ, pp 919–925
Greene W (2007) Functional form and heterogeneity in models for count data. Found Trends®in Econom 1(2):113–218. https://doi.org/10.1561/0800000008
Harris T, Hilbe JM, Hardin JW (2014) Modeling count data with generalized distributions. Stata J 14(3):562–579
Hellström J (2006) A bivariate count data model for household tourism demand. J Appl Econom 21(2):213–226
ISTAT (2014) Rapporto annuale 2013. la situazione del Paese. ISTAT
Kleiber C, Zeileis A (2016) Visualizing count data regressions using rootograms. Am Stat 70(3):296–303
Lambert D (1992) Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34(4):1–14
Mullahy J (1986) Specification and testing of some modified count data models. J Econom 33(3):341–365
Nicolau J, Más F (2004) A random parameter logit approach to the two-stage tourist choice process: going on holidays and length of stay, working paper WP-AD 2004-46, Instituto Valenciano de Investigaciones Económicas, S.A. https://web2011.ivie.es/downloads/docs/wpasad/wpasad-2004-46.pdf
Salmasi L, Celidoni M, Procidano I (2012) Length of stay: price and income semi-elasticities at different destinations in Italy. Int J Tour Res 14:515–530
Su X, Fan J, Levine RA, Tan X, Tripathi A (2013) Multiple-inflation poisson model with $$L_1$$ regularization. Stat Sinica 23:1071–1090